CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 153-161.DOI: 10.11949/0438-1157.20211084
• Thermodynamics • Previous Articles Next Articles
Jiaqing ZHANG(),Zhaohui LIU(),Yu LI,Chenyang SONG
Received:
2021-08-02
Revised:
2021-10-22
Online:
2022-01-18
Published:
2022-01-05
Contact:
Zhaohui LIU
通讯作者:
刘朝晖
作者简介:
张家庆(1998—),男,硕士研究生,基金资助:
CLC Number:
Jiaqing ZHANG, Zhaohui LIU, Yu LI, Chenyang SONG. Viscosity measurements and prediction model construction for liquid JP-10 at high-temperature conditions[J]. CIESC Journal, 2022, 73(1): 153-161.
张家庆, 刘朝晖, 李宇, 宋晨阳. 碳氢燃料JP-10高温液态黏度测量和推算模型构建方法研究[J]. 化工学报, 2022, 73(1): 153-161.
Add to citation manager EndNote|Ris|BibTeX
p=2.0 MPa | p=4.0 MPa | ||||||
---|---|---|---|---|---|---|---|
T/K | ηexp/ (μPa·s) | T/K | ηref/ (μPa·s) | T/K | ηexp/ (μPa·s) | T/K | ηref/ (μPa·s) |
302.0 | 863.65 | 290.0 | 1056.6 | 302.0 | 884.37 | 290.0 | 1085.5 |
319.5 | 646.27 | 300.0 | 885.9 | 319.5 | 663.26 | 300.0 | 909.7 |
327.6 | 594.57 | 310.0 | 754.2 | 327.6 | 610.19 | 310.0 | 774.1 |
335.9 | 531.99 | 320.0 | 650.4 | 335.5 | 541.90 | 320.0 | 667.5 |
345.5 | 471.67 | 330.0 | 567.0 | 345.1 | 486.65 | 330.0 | 581.9 |
356.1 | 416.09 | 340.0 | 498.7 | 356.1 | 427.50 | 340.0 | 511.9 |
368.1 | 356.53 | 350.0 | 441.8 | 368.2 | 366.24 | 350.0 | 453.7 |
375.4 | 336.10 | 400.0 | 259.9 | 375.3 | 346.24 | 400.0 | 268.1 |
391.8 | 283.30 | 500.0 | 106.34 | 392.0 | 291.42 | 500.0 | 115.16 |
396.0 | 275.59 | 396.0 | 284.17 | ||||
405.1 | 244.10 | 405.1 | 252.00 | ||||
416.6 | 219.31 | 416.9 | 226.13 |
Table 1 Calibration experimental values of cyclohexane dynamic viscosity
p=2.0 MPa | p=4.0 MPa | ||||||
---|---|---|---|---|---|---|---|
T/K | ηexp/ (μPa·s) | T/K | ηref/ (μPa·s) | T/K | ηexp/ (μPa·s) | T/K | ηref/ (μPa·s) |
302.0 | 863.65 | 290.0 | 1056.6 | 302.0 | 884.37 | 290.0 | 1085.5 |
319.5 | 646.27 | 300.0 | 885.9 | 319.5 | 663.26 | 300.0 | 909.7 |
327.6 | 594.57 | 310.0 | 754.2 | 327.6 | 610.19 | 310.0 | 774.1 |
335.9 | 531.99 | 320.0 | 650.4 | 335.5 | 541.90 | 320.0 | 667.5 |
345.5 | 471.67 | 330.0 | 567.0 | 345.1 | 486.65 | 330.0 | 581.9 |
356.1 | 416.09 | 340.0 | 498.7 | 356.1 | 427.50 | 340.0 | 511.9 |
368.1 | 356.53 | 350.0 | 441.8 | 368.2 | 366.24 | 350.0 | 453.7 |
375.4 | 336.10 | 400.0 | 259.9 | 375.3 | 346.24 | 400.0 | 268.1 |
391.8 | 283.30 | 500.0 | 106.34 | 392.0 | 291.42 | 500.0 | 115.16 |
396.0 | 275.59 | 396.0 | 284.17 | ||||
405.1 | 244.10 | 405.1 | 252.00 | ||||
416.6 | 219.31 | 416.9 | 226.13 |
参数 | 标准不确定度 |
---|---|
体积流量 | 0.01 ml/min |
压力 | 0.008 MPa |
上游压差 | 1.346 kPa |
下游压差 | 0.006 kPa |
温度 | 0.38 K |
JP-10密度 | 2.50 kg/m3 |
T0温度环己烷黏度 | 4.32 μPa·s |
Table 2 Uncertainties of the main experimental parameters
参数 | 标准不确定度 |
---|---|
体积流量 | 0.01 ml/min |
压力 | 0.008 MPa |
上游压差 | 1.346 kPa |
下游压差 | 0.006 kPa |
温度 | 0.38 K |
JP-10密度 | 2.50 kg/m3 |
T0温度环己烷黏度 | 4.32 μPa·s |
p=2.0 MPa | p=3.0 MPa | p=4.0 MPa | |||||
---|---|---|---|---|---|---|---|
T/K | η/(μPa·s) | T/K | η/(μPa·s) | T/K | η/(μPa·s) | ||
326.9 | 1605.43 | 327.1 | 1588.19 | 326.6 | 1613.19 | ||
349.5 | 1139.05 | 350.4 | 1139.05 | 351.7 | 1124.82 | ||
376.4 | 808.93 | 377.6 | 815.40 | 376.6 | 836.88 | ||
400.1 | 644.97 | 401.4 | 641.91 | 402.0 | 647.21 | ||
425.7 | 516.52 | 427.1 | 517.38 | 427.4 | 519.82 | ||
450.2 | 433.51 | 452.0 | 438.02 | 452.4 | 441.02 | ||
473.3 | 377.72 | 475.4 | 376.50 | 476.6 | 376.06 | ||
501.2 | 306.59 | 503.8 | 306.19 | 504.6 | 312.49 | ||
525.8 | 266.17 | 527.4 | 266.55 | 527.2 | 271.98 | ||
554.6 | 218.34 | 556.5 | 212.97 | 557.0 | 218.35 | ||
573.1 | 189.09 | 574.7 | 190.73 | 575.4 | 196.10 | ||
596.9 | 165.20 | 598.9 | 163.11 | 599.5 | 170.53 | ||
625.1 | 126.74 | 628.7 | 138.08 | 629.2 | 141.91 | ||
661.2 | 120.62 | 668.3 | 135.11 | 665.3 | 134.56 |
Table 3 Viscosity measurement value of JP-10
p=2.0 MPa | p=3.0 MPa | p=4.0 MPa | |||||
---|---|---|---|---|---|---|---|
T/K | η/(μPa·s) | T/K | η/(μPa·s) | T/K | η/(μPa·s) | ||
326.9 | 1605.43 | 327.1 | 1588.19 | 326.6 | 1613.19 | ||
349.5 | 1139.05 | 350.4 | 1139.05 | 351.7 | 1124.82 | ||
376.4 | 808.93 | 377.6 | 815.40 | 376.6 | 836.88 | ||
400.1 | 644.97 | 401.4 | 641.91 | 402.0 | 647.21 | ||
425.7 | 516.52 | 427.1 | 517.38 | 427.4 | 519.82 | ||
450.2 | 433.51 | 452.0 | 438.02 | 452.4 | 441.02 | ||
473.3 | 377.72 | 475.4 | 376.50 | 476.6 | 376.06 | ||
501.2 | 306.59 | 503.8 | 306.19 | 504.6 | 312.49 | ||
525.8 | 266.17 | 527.4 | 266.55 | 527.2 | 271.98 | ||
554.6 | 218.34 | 556.5 | 212.97 | 557.0 | 218.35 | ||
573.1 | 189.09 | 574.7 | 190.73 | 575.4 | 196.10 | ||
596.9 | 165.20 | 598.9 | 163.11 | 599.5 | 170.53 | ||
625.1 | 126.74 | 628.7 | 138.08 | 629.2 | 141.91 | ||
661.2 | 120.62 | 668.3 | 135.11 | 665.3 | 134.56 |
分子量(M) | 临界压力/MPa | 临界温度/K | 偏心因子( |
---|---|---|---|
136.234 | 3.733 | 698.00 | 0.307 |
Table 4 Physical parameters of JP-10 (hanged tetrahydrodicyclopentadiene)
分子量(M) | 临界压力/MPa | 临界温度/K | 偏心因子( |
---|---|---|---|
136.234 | 3.733 | 698.00 | 0.307 |
a# | b# | c# | d# | AAD/% | MAD/% |
---|---|---|---|---|---|
-0.755 | 1002.697 | 0.004 | -2.95×10-6 | 1.91×10-3 | 9.86×10-3 |
Table 5 Empirical equation fitting parameters of JP-10 viscosity at critical pressure
a# | b# | c# | d# | AAD/% | MAD/% |
---|---|---|---|---|---|
-0.755 | 1002.697 | 0.004 | -2.95×10-6 | 1.91×10-3 | 9.86×10-3 |
压力/MPa | α | β | γ | Z | AAD/% | MAD/% |
---|---|---|---|---|---|---|
2.0 | 1.746 | 0.947 | -0.688 | 0.082~0.112 | 1.94 | 3.09 |
3.0 | 2.347 | -0.414 | 0.171 | 0.128~0.169 | 1.96 | 4.10 |
4.0 | 2.779 | -1.189 | 0.618 | 0.168~0.225 | 1.86 | 3.24 |
Table 6 Fitting parameters and calculation results of JP-10 liquid viscosity calculation model
压力/MPa | α | β | γ | Z | AAD/% | MAD/% |
---|---|---|---|---|---|---|
2.0 | 1.746 | 0.947 | -0.688 | 0.082~0.112 | 1.94 | 3.09 |
3.0 | 2.347 | -0.414 | 0.171 | 0.128~0.169 | 1.96 | 4.10 |
4.0 | 2.779 | -1.189 | 0.618 | 0.168~0.225 | 1.86 | 3.24 |
1 | Edwards T. Liquid fuels and propellants for aerospace propulsion: 1903—2003[J]. Journal of Propulsion and Power, 2003, 19(6): 1089-1107. |
2 | 肖红雨, 高峰, 李宁. 再生冷却技术在超燃冲压发动机中的应用与发展[J]. 飞航导弹, 2013(8): 78-81. |
Xiao H Y, Gao F, Li N. Application and development of regenerative cooling technology in scramjet engine [J]. Aerodynamic Missile Journal, 2013(8):78-81. | |
3 | Jones J P, Kuffel L, Sorto-Ramos E, et al. Investigating the legacy of air-breathing and rocket propulsion systems [C]//AIAA Propulsion and Energy 2020 Forum. Reston, Virginia: AIAA, 2020. |
4 |
Xie G N, Xu X X, Lei X L, et al. Heat transfer behaviors of some supercritical fluids: a review[J]. Chinese Journal of Aeronautics, 2021, DOI:10.1016/j.cja.2020.12.022.
DOI |
5 | Zhu Y H, Peng W, Xu R N, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2018, 31(10): 1929-1953. |
6 | Deng H W, Zhang C B, Xu G Q, et al. Viscosity measurements of endothermic hydrocarbon fuel from (298 to 788) K under supercritical pressure conditions[J]. Journal of Chemical & Engineering Data, 2012, 57(2): 358-365. |
7 | Xu K K, Meng H. Analyses of surrogate models for calculating thermophysical properties of aviation kerosene RP-3 at supercritical pressures[J]. Science China Techmological Sciences, 2015, 58(3):510-518. |
8 | Li B, Lee Y, Yao W, et al. Development and application of ANN model for property prediction of supercritical kerosene[J]. Computers & Fluids, 2020, 209:104665. |
9 | Liu Z H, Trusler J P M, Bi Q C. Viscosities of liquid cyclohexane and decane at temperatures between (303 and 598) K and pressures up to 4 MPa measured in a dual-capillary viscometer[J]. Journal of Chemical & Engineering Data, 2015, 60(8): 2363-2370. |
10 | Yang Z Q, Bi Q C, Guo Y, et al. Design of a gamma densitometer for hydrocarbon fuel at high temperature and supercritical pressure[J]. Journal of Chemical & Engineering Data, 2014, 59(11): 3335-3343. |
11 | Vieira dos Santos F J, Castro C A N. Viscosity of toluene and benzene under high pressur[J]. International Journal of Thermophysics, 1997, 18(2): 367-378. |
12 | Avelino H, Fareleira J, Wakeham W. Simultaneous measurement of the density and viscosity of compressed liquid toluene[J]. International Journal of Thermophysics, 2003, 24(2):323-336. |
13 | 王小杰, 朱山杉, 王晓坡, 等. 落体法流体高压液相黏度实验系统[J]. 工程热物理学报, 2020, 41(4): 788-791. |
Wang X J, Zhu S S, Wang X P, et al. Experimental system for high-pressure viscosity measurement based on the falling-body method[J]. Journal of Engineering Thermophysics, 2020, 41(4):788-791. | |
14 | Paton J M, Schaschke C J. Viscosity measurement of biodiesel at high pressure with a falling sinker viscometer [J]. Chemical Engineering Research and Design, 2009, 87(11): 1520-1526. |
15 | Wu J T, Liu Z G, Bi S S, et al. Viscosity of saturated liquid dimethyl ether from (227 to 343) K[J]. Journal of Chemical & Engineering Data, 2003, 48(2): 426-429. |
16 | 冯松, 毕勤成, 刘朝晖, 等. 采用双毛细管等流量法测量航空煤油RP-3的动力黏度[J]. 西安交通大学学报, 2017, 51(3): 48-53. |
Feng S, Bi Q C, Liu Z H, et al. Viscosity measurement of aviation kerosene RP-3 using a double-capillary viscometer with equal mass flow[J]. Journal of Xi'an Jiaotong University, 2017, 51(3):48-53. | |
17 | 杨竹强, 冯松, 潘辉, 等. 双毛细管式碳氢化合物黏度测量方法研究[J]. 西安交通大学学报, 2015, 49(7): 37-41. |
Yang Z Q, Feng S, Pan H, et al. Viscosity measurement of hydrocarbons using a two-capillary viscometer[J]. Journal of Xi'an Jiaotong University, 2015, 49(7): 37-41. | |
18 | Yang Z Q, Liu Z H, Bi Q C, et al. Viscosity measurements of hydrocarbon fuel at temperatures from (303.2 to 513.2)K and pressures up to 5.1 MPa using a two-capillary viscometer[J]. Thermochimica Acta, 2015, 617:1-7. |
19 | Miyara A, Alam M J, Kariya K. Measurement of viscosity of trans-1‑chloro‑3,3,3-trifluoropropene (R-1233zd(E)) by tandem capillary tubes method[J]. International Journal of Refrigeration, 2018, 92:86-93. |
20 | Deguchi S, Ghosh S K, Alargova R G, et al. Viscosity measurements of water at high temperatures and pressures using dynamic light scattering[J]. The Journal of Physical Chemistry B, 2006, 110(37): 18358-18362. |
21 | 曹冬冬, 郭亚军, 冯松, 等. 吸热型碳氢燃料高压低温密度测量实验研究[J]. 热能动力工程, 2017, 32(3): 28-32. |
Cao D D, Guo Y J, Feng S, et al. Experimental study on density measurement of endothermic hydrocarbon fuels under high pressure and low temperature[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(3): 28-32. | |
22 | 刘向阳, 齐雪涛, 何茂刚. 含氧燃料黏度的理论推算模型[J]. 工程热物理学报, 2016, 37(3): 471-474. |
Liu X Y, Qi X T, He M G. A viscosity model for oxygenated fuel[J]. Journal of Engineering Thermophysics, 2016, 37(3): 471-474. | |
23 | Viscosity Eyring H., plasticity, and diffusion as examples of absolute reaction rates[J]. The Journal of Chemical Physics, 1936, 4(4): 283-291. . |
24 | Martins R J, de M Cardoso M J E, Barcia O E. A new model for calculating the viscosity of pure liquids at high pressures[J]. Industrial & Engineering Chemistry Research, 2003, 42(16): 3824-3830. |
25 | Macías-Salinas R, García-Sánchez F, Hernández-Garduza O. Viscosity model for pure liquids based on Eyring theory and cubic EOS[J]. AIChE Journal, 2003, 49(3): 799-804. |
26 | Zhu C Y, Yang F, Liu X Y, et al. Viscosity of oxygenated fuel: a model based on Eyring's absolute rate theory[J]. Fuel, 2019, 241: 218-226. |
27 | Gong S Y, Zhang X W, Bi Q C, et al. Experimental measurement of JP-10 viscosity at 242.7—753.3 K under pressures up to 6.00 MPa[J]. Journal of Chemical & Engineering Data, 2017, 62(11): 3671-3678. |
28 | Tariq U, Jusoh A R B, Riesco N, et al. Reference correlation of the viscosity of cyclohexane from the triple point to 700 K and up to 110 MPa[J]. Journal of Physical and Chemical Reference Data, 2014, 43(3): 033101. |
29 | Lemmon E W, Huber M L, McLinden M O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, Standard Reference Data Program[DB]. Gaithersburg, MD: National Institute of Standards and Technology, 2013. |
30 | Bruno T J, Huber M L, Laesecke A, et al. Thermochemical and thermophysical properties of JP-10[R]. National Institute of Standards and Technology, 2006. |
31 | 韩光泽,房增科,陈明东.Eyring黏度公式的几率修正及基于液体准晶模型分子活化能的计算[J].中国科学:物理学 力学 天文学,2010,40(9):1092-1098. |
Han G Z, Fang Z K, Chen M D. Probability modification of Eyring viscosity formula and molecular activation energy calculation based on liquid quasicrystal model [J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2010, 40(9): 1092-1098. | |
32 | Lei Q F, Hou Y C, Lin R S. Correlation of viscosities of pure liquids in a wide temperature range[J]. Fluid Phase Equilibria, 1997, 140(1/2): 221-231. |
33 | Yaws C L. Chapter 3: Viscosity of liquid-organic compounds [M]//Transport Properties of Chemicals and Hydrocarbons. 2nd ed. Oxford: Gulf Publishing Company, 2014: 131-254. |
[1] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
[2] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[3] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
[4] | Jiaqing ZHANG, Rongpei JIANG, Weikang SHI, Boxiang WU, Chao YANG, Zhaohui LIU. Study on viscosity-temperature characteristics and component characteristics of rocket kerosene [J]. CIESC Journal, 2023, 74(2): 653-665. |
[5] | Yongqian WANG, Ping WANG, Kang CHENG, Chenlin MAO, Wenfeng LIU, Zhicheng YIN, Antonio Ferrante. Stability and NO production of lean premixed ammonia/methane turbulent swirling flame [J]. CIESC Journal, 2022, 73(9): 4087-4094. |
[6] | Zirui WU, Rui SUN, Lingfeng SHI, Hua TIAN, Xuan WANG, Gequn SHU. A comparative and predictive study of the mixing rules for the vapor-liquid equilibria of CO2-based mixtures [J]. CIESC Journal, 2022, 73(4): 1483-1492. |
[7] | Biqiang LIU, Haishan CAO. Adsorption measurement method based on flow calibration and its error analysis [J]. CIESC Journal, 2022, 73(4): 1597-1605. |
[8] | Wenjie LAN, Xiaojie HU, Dizong CAI. Determination of interaction force between droplet and solid surface using droplet probe [J]. CIESC Journal, 2022, 73(3): 1119-1126. |
[9] | Yukun SUN, Tao YANG, Jiangtao WU. Measurement of vapor-liquid equilibrium for R32+R1234yf+R1234ze(E) [J]. CIESC Journal, 2022, 73(3): 1063-1071. |
[10] | Pengzhi BEI, Wenying LI. An energy decomposition analysis-based extractant selection [J]. CIESC Journal, 2022, 73(2): 739-746. |
[11] | Junyi LUO, Shiliang WU, Rui XIAO. Study on combustion characteristics of cycloalkanes mixed with aviation kerosene [J]. CIESC Journal, 2022, 73(2): 847-856. |
[12] | Hanwen XUE, Feng NIE, Yanxing ZHAO, Xueqiang DONG, Hao GUO, Jun SHEN, Maoqiong GONG. Experimental study of flow boiling pressure drop of R290 in a horizontal tube based on flow pattern [J]. CIESC Journal, 2022, 73(11): 4903-4916. |
[13] | Chenyang ZHU, Xiangyang LIU, Maogang HE, Guangjin CHEN. Viscosity estimation of fluid mixtures based on Eyring's absolute rate theory [J]. CIESC Journal, 2022, 73(11): 4826-4837. |
[14] | JIANG Jiatong, HU Bin, WANG Ruzhu, LIU Hua, ZHANG Zhiping, LI Hongbo. Dynamic simulation of horizontal condenser of R1233zd(E) high temperature heat pump [J]. CIESC Journal, 2021, 72(S1): 98-105. |
[15] | WU Di, HU Bin, WANG Ruzhu, YU Jingjing, LIN Xinyi, LI Ziliang. Theoretical study and performance comparison of different heat pump cycles using water as working fluid [J]. CIESC Journal, 2021, 72(S1): 236-243. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||