CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 144-152.DOI: 10.11949/0438-1157.20210882
• Reviews and monographs • Previous Articles Next Articles
Zhiwei ZHANG(),Chunying ZHU,Youguang MA,Taotao FU()
Received:
2021-06-29
Revised:
2021-10-13
Online:
2022-01-18
Published:
2022-01-05
Contact:
Taotao FU
通讯作者:
付涛涛
作者简介:
张志伟(1994—),男,硕士研究生,基金资助:
CLC Number:
Zhiwei ZHANG, Chunying ZHU, Youguang MA, Taotao FU. Progress of self-organization behavior of bubbles and droplets in microchannels[J]. CIESC Journal, 2022, 73(1): 144-152.
张志伟, 朱春英, 马友光, 付涛涛. 微通道内气泡和液滴自组织行为的研究进展[J]. 化工学报, 2022, 73(1): 144-152.
Add to citation manager EndNote|Ris|BibTeX
1 | Gai Y, Leong C M, Cai W, et al. Spatiotemporal periodicity of dislocation dynamics in a two-dimensional microfluidic crystal flowing in a tapered channel[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(43): 12082-12087. |
2 | Gershman I, Gershman E, Mironov A, et al. Application of the self-organization phenomenon in the development of wear resistant materials—a review[J]. Entropy, 2016, 18(11): 385. |
3 | Valdivia J A, Rogan J, Munoz V, et al. Hysteresis provides self-organization in a plasma model[J]. Space Science Reviews, 2006, 122(1/2/3/4): 313-320. |
4 | Gershenson C, Trianni V, Werfel J, et al. Self-organization and artificial life[J]. Artificial Life, 2020, 26(3): 391-408. |
5 | Blank M L. Self-organization under the action of a random force[J]. Doklady Mathematics, 2016, 93(1): 33-36. |
6 | Northrop B H, Zheng Y R, Chi K W, et al. Self-organization in coordination-driven self-assembly[J]. Accounts of Chemical Research, 2009, 42(10): 1554-1563. |
7 | 马余强. 软物质的自组织[J]. 物理学进展, 2002, 22(1): 73-98. |
Ma Y Q. Self organization in soft matter[J]. Progress in Physics, 2002, 22(1): 73-98. | |
8 | Gómez-López M, Preece J A, Stoddart J F. The art and science of self-assembling molecular machines[J]. Nanotechnology, 1996, 7(3): 183-192. |
9 | Umbanhowar P B, Prasad V, Weitz D A. Monodisperse emulsion generation via drop break off in a coflowing stream[J]. Langmuir, 2000, 16(2): 347-351. |
10 | Gañán-Calvo A M, Gordillo J M. Perfectly monodisperse microbubbling by capillary flow focusing[J]. Physical Review Letters, 2001, 87(27pt 1): 274501. |
11 | Clime L, Malic L, Daoud J, et al. Buoyancy-driven step emulsification on pneumatic centrifugal microfluidic platforms[J]. Lab on a Chip, 2020, 20(17): 3091-3095. |
12 | Eggersdorfer M L, Zheng W, Nawar S, et al. Tandem emulsification for high-throughput production of double emulsions[J]. Lab on a Chip, 2017, 17(5): 936-942. |
13 | Zhang Z W, Jiang S K, Zhu C Y, et al. Bubble formation in a step-emulsification microdevice with parallel microchannels[J]. Chemical Engineering Science, 2020, 224: 115815. |
14 | Ofner A, Mattich I, Hagander M, et al. Controlled massive encapsulation via tandem step emulsification in glass[J]. Advanced Functional Materials, 2019, 29(4): 1806821. |
15 | Ofner A, Moore D G, Rühs P A, et al. High-throughput step emulsification for the production of functional materials using a glass microfluidic device[J]. Macromolecular Chemistry and Physics, 2017, 218(2): 1600472. |
16 | Liu L, Xiang N, Ni Z, et al. Step emulsification: high-throughput production of monodisperse droplets[J]. BioTechniques, 2020, 68(3): 114-116. |
17 | Shen Q Y, Zhang C, Tahir M F, et al. Numbering-up strategies of micro-chemical process: uniformity of distribution of multiphase flow in parallel microchannels[J]. Chemical Engineering and Processing-Process Intensification, 2018, 132: 148-159. |
18 | 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4): 427-439. |
Chen G W, Yuan Q. Micro-chemical technology[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4): 427-439. | |
19 | Thorsen T, Roberts R W, Arnold F H, et al. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Physical Review Letters, 2001, 86(18): 4163-4166. |
20 | Durian D J. Foam mechanics at the bubble scale[J]. Physical Review Letters, 1995, 75(26): 4780-4783. |
21 | Garstecki P, Fuerstman M J, Whitesides G M. Oscillations with uniquely long periods in a microfluidic bubble generator[J]. Nature Physics, 2005, 1(3): 168-171. |
22 | Beatus T, Tlusty T, Bar-Ziv R. Phonons in a one-dimensional microfluidic crystal[J]. Nature Physics, 2006, 2(11): 743-748. |
23 | Shani I, Beatus T, Bar-Ziv R H, et al. Long-range orientational order in two-dimensional microfluidic dipoles[J]. Nature Physics, 2014, 10(2): 140-144. |
24 | Schall P, Weitz D A, Spaepen F. Structural rearrangements that govern flow in colloidal glasses[J]. Science, 2007, 318(5858): 1895-1899. |
25 | Schall P, Cohen I, Weitz D A, et al. Visualization of dislocation dynamics in colloidal crystals[J]. Science, 2004, 305(5692): 1944-1948. |
26 | Kim J H, Choi J H, Sim J Y, et al. Ordered packing of emulsion droplets toward the preparation of adjustable photomasks[J]. Langmuir, 2014, 30(19): 5404-5411. |
27 | Parthiban P, Doyle P S, Hashimoto M. Self-assembly of droplets in three-dimensional microchannels[J]. Soft Matter, 2019, 15(21): 4244-4254. |
28 | Stoffel M, Wahl S, Lorenceau E, et al. Bubble production mechanism in a microfluidic foam generator[J]. Physical Review Letters, 2012, 108(19): 198302. |
29 | Dollet B, Raufaste C. Rheology of aqueous foams[J]. Comptes Rendus Physique, 2014, 15(8/9): 731-747. |
30 | Höhler R, Yip Cheung Sang Y, Lorenceau E, et al. Osmotic pressure and structures of monodisperse ordered foam[J]. Langmuir, 2008, 24(2): 418-425. |
31 | Dollet B, Graner F. Two-dimensional flow of foam around a circular obstacle: local measurements of elasticity, plasticity and flow[J]. Journal of Fluid Mechanics, 2007, 585: 181-211. |
32 | Garstecki P, Whitesides G M. Flowing crystals: nonequilibrium structure of foam[J]. Physical Review Letters, 2006, 97(2): 024503. |
33 | Cohen-Addad S, Höhler R, Pitois O. Flow in foams and flowing foams[J]. Annual Review of Fluid Mechanics, 2013, 45(1): 241-267. |
34 | Montessori A, Lauricella M, Succi S. Mesoscale modelling of soft flowing crystals[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377(2142): 20180149. |
35 | Link D R, Anna S L, Weitz D A, et al. Geometrically mediated breakup of drops in microfluidic devices[J]. Physical Review Letters, 2004, 92(5): 054503. |
36 | Shum H C, Zhao Y J, Kim S H, et al. Multicompartment polymersomes from double emulsions[J]. Angewandte Chemie International Edition, 2011, 50(7): 1648-1651. |
37 | Hu H, Gopinadhan M, Osuji C O. Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter[J]. Soft Matter, 2014, 10(22): 3867-3889. |
38 | Seo M, Nie Z H, Xu S Q, et al. Microfluidics: from dynamic lattices to periodic arrays of polymer disks[J]. Langmuir, 2005, 21(11): 4773-4775. |
39 | Whitesides G M, Boncheva M. Beyond molecules: self-assembly of mesoscopic and macroscopic components[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(8): 4769-4774. |
40 | Amstad E, Chemama M, Eggersdorfer M, et al. Robust scalable high throughput production of monodisperse drops[J]. Lab on a Chip, 2016, 16(21): 4163-4172. |
41 | van Dijke K C, Veldhuis G, Schroën K, et al. Simultaneous formation of many droplets in a single microfluidic droplet formation unit[J]. AIChE Journal, 2010, 56(3): 833-836. |
42 | van Dijke K C, Schroën K, van der Padt A, et al. EDGE emulsification for food-grade dispersions[J]. Journal of Food Engineering, 2010, 97(3): 348-354. |
43 | Fan J, Kim S H, Chen Z, et al. Creation of faceted polyhedral microgels from compressed emulsions[J]. Small, 2017, 13(31): 1701256. |
44 | Mann W B, Stephens R W B. XIV. Bubble formation in glass tubes[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1933, 15(96): 143-146. |
45 | Weaire D, Pittet N, Hutzler S, et al. Steady-state drainage of an aqueous foam[J]. Physical Review Letters, 1993, 71(16): 2670-2673. |
46 | Sun Q C, Hutzler S. Lattice gas simulations of two-dimensional liquid foams[J]. Rheologica Acta, 2004, 43(5): 567-574. |
47 | Bolton F, Weaire D. The effects of plateau borders in the two-dimensional soap froth I. Decoration lemma and diffusion theorem[J]. Philosophical Magazine B, 1991, 63(4): 795-809. |
48 | Furuta Y, Oikawa N, Kurita R. Close relationship between a dry-wet transition and a bubble rearrangement in two-dimensional foam[J]. Scientific Reports, 2016, 6: 37506. |
49 | Katgert G, Tighe B P, van Hecke M. The jamming perspective on wet foams[J]. Soft Matter, 2013, 9(41): 9739. |
50 | Drenckhan W, Hutzler S. Structure and energy of liquid foams[J]. Advances in Colloid and Interface Science, 2015, 224: 1-16. |
51 | Cox S J. A viscous froth model for dry foams in the surface evolver[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 263(1/2/3): 81-89. |
52 | Thutupalli S, Herminghaus S, Seemann R. Bilayer membranes in micro-fluidics: from gel emulsions to soft functional devices[J]. Soft Matter, 2011, 7(4): 1312-1320. |
53 | Hashimoto M, Shevkoplyas S S, Zasońska B, et al. Formation of bubbles and droplets in parallel, coupled flow-focusing geometries[J]. Small, 2008, 4(10): 1795-1805. |
54 | Surenjav E, Herminghaus S, Priest C, et al. Discrete microfluidics: reorganizing droplet arrays at a bend[J]. Applied Physics Letters, 2009, 95(15): 154104. |
55 | Drenckhan W, Cox S J, Delaney G, et al. Rheology of ordered foams—on the way to discrete microfluidics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 263(1/2/3): 52-64. |
56 | 张志伟, 殷翔宇, 朱春英, 等. 台阶式并行微通道内气泡群自组装行为及其对气泡生成的反馈效应[J]. 力学学报, 2020, 52(2): 420-430. |
Zhang Z W, Yin X Y, Zhu C Y, et al. Self-assembly of bubble swarm in large cavities in step-type parallelized microchannels and its feedback on bubble formation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 420-430. | |
57 | Raven J P, Marmottant P. Periodic microfluidic bubbling oscillator: insight into the stability of two-phase microflows[J]. Physical Review Letters, 2006, 97(15): 154501. |
58 | Saugey A, Drenckhan W, Weaire D. Wall slip of bubbles in foams[J]. Physics of Fluids, 2006, 18(5): 053101. |
59 | Cantat I, Delannay R. Dissipative flows of 2D foams[J]. The European Physical Journal E, 2005, 18(1): 55-67. |
60 | Raven J P, Marmottant P. Microfluidic crystals: dynamic interplay between rearrangement waves and flow[J]. Physical Review Letters, 2009, 102(8): 084501. |
61 | Priest C, Herminghaus S, Seemann R. Generation of monodisperse gel emulsions in a microfluidic device[J]. Applied Physics Letters, 2006, 88(2): 024106. |
62 | Jang W Y, Kraynik A M, Kyriakides S. On the microstructure of open-cell foams and its effect on elastic properties[J]. International Journal of Solids and Structures, 2008, 45(7/8): 1845-1875. |
63 | Surenjav E, Priest C, Herminghaus S, et al. Manipulation of gel emulsions by variable microchannel geometry[J]. Lab on a Chip, 2009, 9(2): 325-330. |
64 | Anazadehsayed A, Rezaee N, Naser J, et al. A review of aqueous foam in microscale[J]. Advances in Colloid and Interface Science, 2018, 256: 203-229. |
65 | Weaire D, Vaz M F, Teixeira P I C, et al. Instabilities in liquid foams[J]. Soft Matter, 2007, 3(1): 47-57. |
66 | Weaire D, Kermode J P. Computer simulation of a two-dimensional soap froth[J]. Philosophical Magazine B, 1983, 48(3): 245-259. |
67 | Tewari S, Schiemann D, Durian D J, et al. Statistics of shear-induced rearrangements in a two-dimensional model foam[J]. Physical Review E, 1999, 60(4): 4385-4396. |
68 | Graner F, Jiang Y, Janiaud E, et al. Equilibrium states and ground state of two-dimensional fluid foams[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2001, 63(1Pt 1): 011402. |
69 | Cantat I, Delannay R. Dynamical transition induced by large bubbles in two-dimensional foam flows[J]. Physical Review E, 2003, 67(3): 031501. |
70 | Okuzono T, Kawasaki K. Intermittent flow behavior of random foams: a computer experiment on foam rheology[J]. Physical Review E, 1995, 51(2): 1246-1253. |
[1] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[2] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[3] | Keke SHAO, Mengjie SONG, Zhengyong JIANG, Xuan ZHANG, Long ZHANG, Runmiao GAO, Zekang ZHEN. Experimental study on the formation and distribution of trapped air bubbles in horizontal ice slice [J]. CIESC Journal, 2023, 74(S1): 161-164. |
[4] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[5] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[6] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[7] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[8] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[9] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[10] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[11] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[12] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
[13] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[14] | Zhengtao LI, Zhijie YUAN, Gaohong HE, Xiaobin JIANG. Study of the mechanism of internal circulation regulation during evaporation of NaCl droplets on hydrophobic interface [J]. CIESC Journal, 2023, 74(5): 1904-1913. |
[15] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||