CIESC Journal ›› 2022, Vol. 73 ›› Issue (3): 1246-1255.DOI: 10.11949/0438-1157.20211308
• Process system engineering • Previous Articles Next Articles
Xiaoqing SHI(),Weixuan ZHU,Haotian YE,Zhizhong HAN,Hongguang DONG()
Received:
2021-09-07
Revised:
2021-11-26
Online:
2022-03-14
Published:
2022-03-15
Contact:
Hongguang DONG
通讯作者:
董宏光
作者简介:
石晓青(1996—),男,硕士研究生,基金资助:
CLC Number:
Xiaoqing SHI, Weixuan ZHU, Haotian YE, Zhizhong HAN, Hongguang DONG. Pretreatment process simulation and multi-objective optimization of C5 by reactive dividing wall column[J]. CIESC Journal, 2022, 73(3): 1246-1255.
石晓青, 朱炜玄, 叶昊天, 韩志忠, 董宏光. 碳五隔壁反应精馏预处理工艺模拟及多目标优化[J]. 化工学报, 2022, 73(3): 1246-1255.
Add to citation manager EndNote|Ris|BibTeX
组分 | 质量分数/% | 组分 | 质量分数/% | 组分 | 质量分数/% |
---|---|---|---|---|---|
碳四 | 5.07 | 正戊烷 | 10.01 | CPD | 17.70 |
3-甲基-1-丁烯 | 0.13 | IP | 20.40 | 顺-1,3-戊二烯 | 4.31 |
异戊烷 | 5.36 | 反-2-戊烯 | 1.78 | 环戊烯 | 4.99 |
1,4-戊二烯 | 1.44 | 顺-2-戊烯 | 1.12 | 环戊烷 | 2.01 |
2-丁烯 | 0.42 | 2-甲基-2-丁烯 | 1.90 | 2-甲基-戊烷 | 1.71 |
1-戊烯 | 2.68 | 反式-1,3-戊二烯 | 7.29 | 苯 | 6.89 |
2-甲基-1-丁烯 | 3.69 | 2-甲基-1-丁烯-3炔 | 0.10 | 甲苯 | 1.00 |
Table 1 Composition of C5 raw materials
组分 | 质量分数/% | 组分 | 质量分数/% | 组分 | 质量分数/% |
---|---|---|---|---|---|
碳四 | 5.07 | 正戊烷 | 10.01 | CPD | 17.70 |
3-甲基-1-丁烯 | 0.13 | IP | 20.40 | 顺-1,3-戊二烯 | 4.31 |
异戊烷 | 5.36 | 反-2-戊烯 | 1.78 | 环戊烯 | 4.99 |
1,4-戊二烯 | 1.44 | 顺-2-戊烯 | 1.12 | 环戊烷 | 2.01 |
2-丁烯 | 0.42 | 2-甲基-2-丁烯 | 1.90 | 2-甲基-戊烷 | 1.71 |
1-戊烯 | 2.68 | 反式-1,3-戊二烯 | 7.29 | 苯 | 6.89 |
2-甲基-1-丁烯 | 3.69 | 2-甲基-1-丁烯-3炔 | 0.10 | 甲苯 | 1.00 |
主要二聚反应 | 反应方程式 | Arrhenius方程 |
---|---|---|
环戊二烯二聚 | ||
异戊二烯二聚 | ||
间戊二烯二聚 | ||
环戊二烯与间戊二烯共聚 | ||
环戊二烯与异戊二烯共聚 |
Table 2 Kinetics of dimerization and copolymerization
主要二聚反应 | 反应方程式 | Arrhenius方程 |
---|---|---|
环戊二烯二聚 | ||
异戊二烯二聚 | ||
间戊二烯二聚 | ||
环戊二烯与间戊二烯共聚 | ||
环戊二烯与异戊二烯共聚 |
操作参数 | 反应精馏塔 | 脱炔塔 |
---|---|---|
理论板数 | 90 | 120 |
进料位置 | 50 | 80 |
反应段 | 41~90 | ― |
停留时间/s | 10 | ― |
回流比 | 8 | 25 |
塔顶馏出量/(kg/h) | 500 | 150 |
IP质量分数/% | 55.03 | |
CPD质量分数/% | 0.41 | |
总炔烃质量分数/(mg/kg) | 25.34 | |
选择性S/% | 97.11 |
Table 3 Simulation results of reactive distillation tower and dealkylation tower
操作参数 | 反应精馏塔 | 脱炔塔 |
---|---|---|
理论板数 | 90 | 120 |
进料位置 | 50 | 80 |
反应段 | 41~90 | ― |
停留时间/s | 10 | ― |
回流比 | 8 | 25 |
塔顶馏出量/(kg/h) | 500 | 150 |
IP质量分数/% | 55.03 | |
CPD质量分数/% | 0.41 | |
总炔烃质量分数/(mg/kg) | 25.34 | |
选择性S/% | 97.11 |
因素 | 水平 | ||
---|---|---|---|
低(-1) | 中(0) | 高(1) | |
N1 | 68 | 70 | 72 |
N2 | 78 | 80 | 82 |
N3 | 18 | 20 | 22 |
NF | 43 | 45 | 47 |
NS | 38 | 40 | 42 |
t/s | 4 | 7 | 10 |
Table 4 BBD combination design factors, levels and coding values
因素 | 水平 | ||
---|---|---|---|
低(-1) | 中(0) | 高(1) | |
N1 | 68 | 70 | 72 |
N2 | 78 | 80 | 82 |
N3 | 18 | 20 | 22 |
NF | 43 | 45 | 47 |
NS | 38 | 40 | 42 |
t/s | 4 | 7 | 10 |
优化解 | 1 | 2 | 3 | |||
---|---|---|---|---|---|---|
预测值 | 模拟值 | 预测值 | 模拟值 | 预测值 | 模拟值 | |
公共精馏段塔板数 | 72 | 71 | 69 | |||
隔板两侧塔板数 | 82 | 82 | 78 | |||
公共提馏段塔板数 | 22 | 21 | 21 | |||
进料位置(T2塔段计) | 46 | 44 | 43 | |||
侧线采出位置(T3塔段计) | 42 | 41 | 38 | |||
停留时间t/s | 7.9 | 4.4 | 4 | |||
TAC/(USD/a) | 3.91×105 | 3.99×105(2.0%) | 3.90×105 | 4.05×105(3.8%) | 3.88×105 | 3.86×105(-0.5%) |
再沸器负荷Q/kW | 521.61 | 533.39(2.3%) | 523.51 | 539.06(3.0%) | 578.02 | 593.55(2.7%) |
选择性S/% | 97.51 | 97.41(-0.1%) | 97.28 | 97.37(0.1%) | 97.13 | 97.19(0.1%) |
Table 5 Some Pareto optimal solutions and their corresponding parameter values
优化解 | 1 | 2 | 3 | |||
---|---|---|---|---|---|---|
预测值 | 模拟值 | 预测值 | 模拟值 | 预测值 | 模拟值 | |
公共精馏段塔板数 | 72 | 71 | 69 | |||
隔板两侧塔板数 | 82 | 82 | 78 | |||
公共提馏段塔板数 | 22 | 21 | 21 | |||
进料位置(T2塔段计) | 46 | 44 | 43 | |||
侧线采出位置(T3塔段计) | 42 | 41 | 38 | |||
停留时间t/s | 7.9 | 4.4 | 4 | |||
TAC/(USD/a) | 3.91×105 | 3.99×105(2.0%) | 3.90×105 | 4.05×105(3.8%) | 3.88×105 | 3.86×105(-0.5%) |
再沸器负荷Q/kW | 521.61 | 533.39(2.3%) | 523.51 | 539.06(3.0%) | 578.02 | 593.55(2.7%) |
选择性S/% | 97.51 | 97.41(-0.1%) | 97.28 | 97.37(0.1%) | 97.13 | 97.19(0.1%) |
项目 | 反应 精馏塔 | 脱炔塔 | 反应精馏工艺 | RDWC | 节省率 |
---|---|---|---|---|---|
塔板数 | 90 | 120 | 210 | 168 | — |
进料位置 | 50 | 80 | — | 112 | — |
侧线采出位置 | — | — | — | 107 | — |
反应段 | 41~90 | — | — | 88~168 | — |
停留时间t/s | 10 | — | — | 4 | — |
气相分配比 | — | — | — | 0.51 | — |
液相分配比 | — | — | — | 0.47 | — |
回流比 | 8 | 23 | — | 37.5 | — |
再沸器负荷Q/kW | 432.20 | 368.36 | 800.56 | 578.02 | 27.8% |
TAC/(USD/a) | 2.18×105 | 2.27×105 | 4.45×105 | 3.88×105 | 12.8% |
选择性S | — | — | 97.11% | 97.13% | — |
Table 6 Comparison of RDWC and RD processes
项目 | 反应 精馏塔 | 脱炔塔 | 反应精馏工艺 | RDWC | 节省率 |
---|---|---|---|---|---|
塔板数 | 90 | 120 | 210 | 168 | — |
进料位置 | 50 | 80 | — | 112 | — |
侧线采出位置 | — | — | — | 107 | — |
反应段 | 41~90 | — | — | 88~168 | — |
停留时间t/s | 10 | — | — | 4 | — |
气相分配比 | — | — | — | 0.51 | — |
液相分配比 | — | — | — | 0.47 | — |
回流比 | 8 | 23 | — | 37.5 | — |
再沸器负荷Q/kW | 432.20 | 368.36 | 800.56 | 578.02 | 27.8% |
TAC/(USD/a) | 2.18×105 | 2.27×105 | 4.45×105 | 3.88×105 | 12.8% |
选择性S | — | — | 97.11% | 97.13% | — |
1 | 张旭之, 马润宇, 王松汉, 等. 碳四碳五烯烃工学[M]. 北京: 化学工业出版社, 1998: 585-612. |
Zhang X Z, Ma R H, Wang S H, et al. C4 and C5 Olefin Engineering[M]. Beijing: Chemical Industry Press, 1998: 585-612. | |
2 | 吴海君, 郭世卓. 裂解碳五综合利用发展趋势[J]. 当代石油石化, 2004, 12(6): 25-28. |
Wu H J, Guo S Z. Development trend of comprehensive utilization of pyrolysis C5 [J]. Petroleum & Petrochemical Today, 2004, 12(6): 25-28. | |
3 | 吴鹏, 包宗宏. 异戊二烯两段式萃取精馏分离工艺的改进[J]. 化学工程, 2013, 41(12): 65-69. |
Wu, P, Bao Z H. Improved process for separating isoprene by two-stage extractive distillation[J]. Chemical Engineering, 2013, 41(12): 65-69. | |
4 | 王佩琳. DMF萃取蒸馏分离C5工艺流程的改进[J]. 石油炼制与化工, 1997(2): 5-10. |
Wang P L. Improvement of DMF extractive distillation process for separation of C5 [J]. Petroleum Processing and Petrochemicals, 1997(2): 5-10. | |
5 | 田保亮, 唐国旗, 张齐, 等. 从裂解碳五分离聚合级异戊二烯的一段萃取工艺[J]. 化工进展, 2009, 28(4): 714-720. |
Tian B L, Tang G Q, Zhang Q, et al. One-stage extraction technology of separating polymer-grade isoprene from cracked C5 fraction[J]. Chemical Industry and Engineering Progress, 2009, 28 (4): 714-720. | |
6 | Jiang Z, Agrawal R. Process intensification in multicomponent distillation: a review of recent advancements[J]. Chemical Engineering Research and Design: Transactions of the Institution of Chemical Engineers, 2019, 147: 122-145. |
7 | Kiss A A, Olujic Z. A review on process intensification in internally heat-integrated distillation columns[J]. Chemical Engineering and Processing, 2014, 86: 125-144. |
8 | Shen W, Benyounes H, Gerbaud V. Extractive distillation: recent advances in operation strategies[J]. Reviews in Chemical Engineering, 2015, 31(1): 13-26. |
9 | 孙宏伟, 陈建峰. 我国化工过程强化技术理论与应用研究进展[J]. 化工进展, 2011, 30(1): 1-15. |
Sun H W, Chen J F. Advances in fundamental study and application of chemical process intensification technology in China[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 1-15. | |
10 | 任海伦, 安登超, 朱桃月, 等. 精馏技术研究进展与工业应用[J]. 化工进展, 2016, 35(6): 1606-1626. |
Ren H L, An D C, Zhu T Y, et al. Distillation technology research progress and industrial application[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1606-1626. | |
11 | Dejanovic I, Matijasevic L, Olujic Z. Dividing wall column—a breakthrough towards sustainable distilling[J]. Chemical Engineering and Processing-Process Intensification, 2010, 49(6): 559-580. |
12 | Asprion N, Kaibel G. Dividing wall columns: fundamentals and recent advances[J]. Chemical Engineering and Processing-Process Intensification, 2010, 49(2): 139-146. |
13 | Mueller I, Kloeker M, Kenig E Y. Modeling and optimization for energy saving and pollution reduction[C]//16th conference on Process Integration, Modeling and Optimization action for Energy Saving and Pollution Reduction. Rhodes, Greece, 2013. |
14 | 杨杰, 祁江羽, 沙勇. 反应精馏隔壁塔制甲缩醛过程模拟与分析[J]. 化工学报, 2019, 70(3): 960-968. |
Yang J, Qi J Y, Sha Y, et al. Simulation and analysis of reactive dividing-wall column for methylal production process[J]. CIESC Journal, 2019, 70(3): 960-968. | |
15 | 陈梦琪, 于娜, 刘育良, 等. 反应精馏隔壁塔生产乙酸正丁酯的优化与控制[J]. 化工学报, 2016, 67(12): 5066-5081. |
Chen M Q, Yu N, Liu Y L, et al. Optimization and control of reactive dividing wall column for production of n-butylacetate[J]. CIESC Journal, 2016, 67(12): 5066-5081. | |
16 | Kiss A A, Suszwalak D J P C. Innovative dimethyl ether synthesis in a reactive dividing-wall column[J]. Computers & Chemical Engineering, 2012, 38: 74-81. |
17 | Li L, Sun L, Yang D, et al. Reactive dividing wall column for hydrolysis of methyl acetate: design and control[J]. Chinese Journal of Chemical Engineering, 2016, 24(10): 1360-1368. |
18 | Kaur J, Sangal V K. Optimization of reactive dividing-wall distillation column for ethyl t-butyl ether synthesis[J]. Chemical Engineering & Technology, 2018, 41(5): 1057-1065. |
19 | 翟建, 刘育良, 李鲁闽, 等. 萃取精馏分离苯/环己烷共沸体系模拟与优化[J]. 化工学报, 2015, 66(9): 3570-3579. |
Zhai J, Liu Y L, Li L M, et al. Simulation and optimization of extractive distillation for separation of azeotropic benzene/cyclohexane system[J]. CIESC Journal, 2015, 66(9): 3570-3579. | |
20 | Zhang Y, He N, Masuku C M, et al. A multi-objective reactive distillation optimization model for Fischer-Tropsch synthesis[J]. Computers & Chemical Engineering, 2020, 135: 106754. |
21 | Ochoa-Estopier L M, Jobson M, Smith R. Operational optimization of crude oil distillation systems using artificial neural networks[J]. Computers & Chemical Engineering, 2013, 59(5):178-185. |
22 | Reddy P S, Rani K Y, Patwardhan S C. Multi-objective optimization of a reactive batch distillation process using reduced order model[J]. Computers & Chemical Engineering, 2017, 106:40-56. |
23 | 李军, 王纯正, 马占华, 等. 基于Aspen Plus和NSGA-Ⅱ的隔壁塔多目标优化研究[J]. 高校化学工程学报, 2015, 29(2):400-406. |
Li J, Wang C Z, Ma Z H, et al. Multi-objective optimization of dividing wall columns with Aspen Plus and NSGA-Ⅱ[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(2):400-406. | |
24 | 陈博, 廖祖维, 王靖岱, 等. 芳烃抽提过程多目标优化[J]. 化工学报, 2012, 63(3): 851-859. |
Chen B, Liao Z W, Wang J D, et al. Multi-objective optimization of aromatic extraction process[J]. CIESC Journal, 2012, 63(3): 851-859. | |
25 | 胡竞民, 徐宏芬, 李雪, 等. 裂解碳五馏分中的反应精馏技术[J]. 石油化工设计,1999, 16(2): 9-11. |
Hu J M, Xu H F, Li X, et al. Reactive fractionation technology of cracking C5 fraction[J]. Petrochemical Design, 1999, 16(2): 9-11. | |
26 | Kang D, Lee J W. Graphical design of integrated reaction and distillation in dividing wall columns[J]. Industrial & Engineering Chemistry Research, 2015, 54(12): 3175-3185. |
27 | Turnbull A G, Hull H S. A thermodynamic study of the dimerization of cyclopentadiene[J]. Australian Journal of Chemistry,1968, 21(7): 1789-1797. |
28 | Walling C, Peisach J. Organic reactions under high pressure. Ⅳ. The dimerization of isoprene[J]. Journal of the American Chemical Society, 1958, 80(21): 5819-5824. |
29 | 白庚辛. 环戊二烯二聚过程动力学的研究[J]. 石油化工, 1981(2): 84-94. |
Bai G X. Study on kinetics of dimerization of cyclopentadiene[J]. Petrochemical Technology, 1981(2): 84-94. | |
30 | 吴江涛, 包宗宏. 二聚-解聚法制备高纯双环戊二烯的技术进展[J].化学工业与工程技术, 2005, 26(5):7-10. |
Wu J T, Bao Z H. Technology progress for production of high-purity dicyclopentadiene by dimerization-monomerization[J]. Journal of Chemical Industry and Engineering Technology, 2005, 26(5):7-10. | |
31 | 刘家祺, 王秀珍, 张俊台, 等. 裂解C5馏份热二聚制双环戊二烯[J]. 石油化工, 1996, 25(4): 248-252. |
Liu J Q, Wang X Z, Zhang J T, et al. Formation of dicyclopentadiene by thermal dimerization from C5 fractions[J]. Petrochemical Technology, 1996, 25(4): 248-252. | |
32 | 过良, 李东风, 王金福. 裂解C5反应精馏工艺的模拟计算[J]. 石油化工, 2014, 43(12): 1394-1400. |
Guo L, Li D F, Wang J F. Simulation of reactive distillation process for separation of steam cracking C5 [J]. Petrochemical Technology, 2014, 43(12): 1394-1400. | |
33 | 田保亮, 唐国旗, 张齐, 等. 分离环戊二烯的热二聚和反应精馏工艺的模拟计算[J]. 石油化工, 2008, 37(12): 1276-1281. |
Tian B L, Tang G Q, Zhang Q, et al. Simulation of thermal dimerization and reactive distillation processes in separation of cyclopentadiene from steam cracking C5 [J]. Petrochemical Technology, 2008, 37(12): 1276-1281. | |
34 | 方静, 祁建超, 李春利, 等. 隔壁塔四塔模型的设计计算[J]. 石油化工, 2014, 43(5): 530-535. |
Fang J, Qi J C, Li C L, et al. Design and calculation of four-column model of dividing wall column[J]. Petrochemical Technology, 2014, 43(5): 530-535. | |
35 | Becker H, Godorr S, Kreis H, et al. Partitioned distillation columns: why, when & how[J]. Chemical Engineering Journal, 2001, 108(1): 68-75. |
36 | Luyben W L. Distillation Design and Control Using Aspen Simulation[M]. New York: John Wiley & Sons, 2008. |
37 | 郑金华. 多目标进化算法及其应用[M]. 北京: 科学出版社, 2007: 12-38. |
Zheng J H. Multi Objective Evolutionary Algorithm and Its Application[M]. Beijing: Science Press, 2007: 12-38. | |
38 | Li H, Zhang Q F. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 284-302. |
39 | Bumbac G, Plesu A E, Plesu V. Reactive distillation process analysis in a divided wall column[J]. Computer Aided Chemical Engineering, 2007, 24: 443-448. |
40 | Seader J D, henley E J. Separation Process Principles[M]. 2nd ed. New York: John Wiley & Sons, 2006. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[5] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[6] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[7] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[8] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[9] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[10] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[11] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[12] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[13] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[14] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[15] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||