CIESC Journal ›› 2021, Vol. 72 ›› Issue (12): 5965-5974.DOI: 10.11949/0438-1157.20210921
• Reviews and monographs • Previous Articles Next Articles
Chuanfu DENG1(),Wei WANG1,2,Rui XIE1,2,Xiaojie JU1,2,Zhuang LIU1,2,Liangyin CHU1,2()
Received:
2021-07-05
Revised:
2021-08-25
Online:
2021-12-22
Published:
2021-12-05
Contact:
Liangyin CHU
邓传富1(),汪伟1,2,谢锐1,2,巨晓洁1,2,刘壮1,2,褚良银1,2()
通讯作者:
褚良银
作者简介:
邓传富(1996—),男,博士研究生,基金资助:
CLC Number:
Chuanfu DENG,Wei WANG,Rui XIE,Xiaojie JU,Zhuang LIU,Liangyin CHU. Recent progress in scale-up integration of microfluidic droplet generators[J]. CIESC Journal, 2021, 72(12): 5965-5974.
邓传富,汪伟,谢锐,巨晓洁,刘壮,褚良银. 液滴微流控的集成化放大方法研究进展[J]. 化工学报, 2021, 72(12): 5965-5974.
Add to citation manager EndNote|Ris|BibTeX
1 | Utech S, Prodanovic R, Mao A S, et al. Microfluidic generation of monodisperse, structurally homogeneous alginate microgels for cell encapsulation and 3D cell culture[J]. Advanced Healthcare Materials, 2015, 4(11): 1628-1633. |
2 | Hou Y, Xie W Y, Achazi K, et al. Injectable degradable PVA microgels prepared by microfluidic technology for controlled osteogenic differentiation of mesenchymal stem cells[J]. Acta Biomaterialia, 2018, 77: 28-37. |
3 | Yu D, Dong Z Y, Lim H, et al. Microfluidic preparation, shrinkage, and surface modification of monodispersed alginate microbeads for 3D cell culture[J]. RSC Advances, 2019, 9(20): 11101-11110. |
4 | Wang Q, Qian K, Liu S, et al. X-ray visible and uniform alginate microspheres loaded with in situ synthesized BaSO4 nanoparticles for in vivo transcatheter arterial embolization[J]. Biomacromolecules, 2015, 16(4): 1240-1246. |
5 | Beh C W, Fu Y L, Weiss C R, et al. Microfluidic-prepared, monodisperse, X-ray-visible, embolic microspheres for non-oncological embolization applications[J]. Lab on a Chip, 2020, 20(19): 3591-3600. |
6 | Han Y, Yang J L, Zhao W W, et al. Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis[J]. Bioactive Materials, 2021, 6(10): 3596-3607. |
7 | Zhao Z Y, Wang Z, Li G, et al. Injectable microfluidic hydrogel microspheres for cell and drug delivery[J]. Advanced Functional Materials, 2021, 31(31): 2103339. |
8 | Madrigal J L, Stilhano R S, Siltanen C, et al. Microfluidic generation of alginate microgels for the controlled delivery of lentivectors[J]. Journal of Materials Chemistry B, 2016, 4(43): 6989-6999. |
9 | Zhao X, Liu Y, Yu Y, et al. Hierarchically porous composite microparticles from microfluidics for controllable drug delivery[J]. Nanoscale, 2018, 10(26): 12595-12604. |
10 | He F, Zhang M J, Wang W, et al. Designable polymeric microparticles from droplet microfluidics for controlled drug release[J]. Advanced Materials Technologies, 2019, 4(6): 1800687. |
11 | Caballero Aguilar L M, Duchi S, Onofrillo C, et al. Formation of alginate microspheres prepared by optimized microfluidics parameters for high encapsulation of bioactive molecules[J]. Journal of Colloid and Interface Science, 2021, 587: 240-251. |
12 | Wang J M, Wang X Y, Zhu P G, et al. Microfluidic rapid fabrication of tunable polyvinyl alcohol microspheres for adsorption applications[J]. Materials, 2019, 12(22): 3712. |
13 | Chen L, Zhang M J, Zhang S Y, et al. Simple and continuous fabrication of self-propelled micromotors with photocatalytic metal-organic frameworks for enhanced synergistic environmental remediation[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 35120-35131. |
14 | Liu J R, Chen H, Shi X J, et al. Hydrogel microcapsules with photocatalytic nanoparticles for removal of organic pollutants[J]. Environmental Science: Nano, 2020, 7(2): 656-664. |
15 | Zhang M J, Chen T, Zhang P, et al. Magnetic hierarchical porous SiO2 microparticles from droplet microfluidics for water decontamination[J]. Soft Matter, 2020, 16(10): 2581-2593. |
16 | Liu W Y, Ju X J, Pu X Q, et al. Functional capsules encapsulating molecular-recognizable nanogels for facile removal of organic micro-pollutants from water[J]. Engineering, 2021, 7(5): 636-646. |
17 | Jeong H H, Issadore D, Lee D. Recent developments in scale-up of microfluidic emulsion generation via parallelization[J]. Korean Journal of Chemical Engineering, 2016, 33(6): 1757-1766. |
18 | Holtze C. Large-scale droplet production in microfluidic devices-an industrial perspective[J]. Journal of Physics D: Applied Physics, 2013, 46(11): 114008. |
19 | Schroën K, Bliznyuk O, Muijlwijk K, et al. Microfluidic emulsification devices: from micrometer insights to large-scale food emulsion production[J]. Current Opinion in Food Science, 2015, 3: 33-40. |
20 | Shen Q Y, Zhang C, Tahir M F, et al. Numbering-up strategies of micro-chemical process: uniformity of distribution of multiphase flow in parallel microchannels[J]. Chemical Engineering and Processing-Process Intensification, 2018, 132: 148-159. |
21 | Nisisako T. Recent advances in microfluidic production of Janus droplets and particles[J]. Current Opinion in Colloid & Interface Science, 2016, 25: 1-12. |
22 | Thorsen T, Roberts R W, Arnold F H, et al. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Physical Review Letters, 2001, 86(18): 4163-4166. |
23 | Utada A S, Fernandez-Nieves A, Stone H A, et al. Dripping to jetting transitions in coflowing liquid streams[J]. Physical Review Letters, 2007, 99(9): 094502. |
24 | Fu T T, Wu Y N, Ma Y G, et al. Droplet formation and breakup dynamics in microfluidic flow-focusing devices: from dripping to jetting[J]. Chemical Engineering Science, 2012, 84: 207-217. |
25 | Amstad E, Chen X M, Eggersdorfer M, et al. Parallelization of microfluidic flow-focusing devices[J]. Physical Review E, 2017, 95(4): 043105. |
26 | Zhu P G, Wang L Q. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2017, 17(1): 34-75. |
27 | Utada A S, Chu L Y, Fernandez-Nieves A, et al. Dripping, jetting, drops, and wetting: the magic of microfluidics[J]. MRS Bulletin, 2007, 32(9): 702-708. |
28 | Jeong H H, Yelleswarapu V R, Yadavali S, et al. Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3D MED)[J]. Lab on a Chip, 2015, 15(23): 4387-4392. |
29 | Muluneh M, Issadore D. Hybrid soft-lithography/laser machined microchips for the parallel generation of droplets[J]. Lab on a Chip, 2013, 13(24): 4750-4754. |
30 | Jeong H H, Yadavali S, Issadore D, et al. Liter-scale production of uniform gas bubbles via parallelization of flow-focusing generators[J]. Lab on a Chip, 2017, 17(15): 2667-2673. |
31 | Romanowsky M B, Abate A R, Rotem A, et al. High throughput production of single core double emulsions in a parallelized microfluidic device[J]. Lab on a Chip, 2012, 12(4): 802. |
32 | Yadavali S, Jeong H H, Lee D, et al. Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles[J]. Nature Communications, 2018, 9: 1222. |
33 | Femmer T, Jans A, Eswein R, et al. High-throughput generation of emulsions and microgels in parallelized microfluidic drop-makers prepared by rapid prototyping[J]. ACS Applied Materials & Interfaces, 2015, 7(23): 12635-12638. |
34 | Han T T, Zhang L, Xu H, et al. Factory-on-chip: modularised microfluidic reactors for continuous mass production of functional materials[J]. Chemical Engineering Journal, 2017, 326: 765-773. |
35 | Huang Y C, Han T T, Xuan J, et al. Design criteria and applications of multi-channel parallel microfluidic module[J]. Journal of Micromechanics and Microengineering, 2018, 28(10): 105021. |
36 | Cui Y J, Li Y K, Wang K, et al. High-throughput preparation of uniform tiny droplets in multiple capillaries embedded stepwise microchannels[J]. Journal of Flow Chemistry, 2020, 10(1): 271-282. |
37 | Conchouso D, Castro D, Khan S A, et al. Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions[J]. Lab on a Chip, 2014, 14(16): 3011. |
38 | Li W, Greener J, Voicu D, et al. Multiple modular microfluidic (M3) reactors for the synthesis of polymer particles[J]. Lab on a Chip, 2009, 9(18): 2715. |
39 | Bardin D, Kendall M R, Dayton P A, et al. Parallel generation of uniform fine droplets at hundreds of kilohertz in a flow-focusing module[J]. Biomicrofluidics, 2013, 7(3): 034112. |
40 | Nisisako T, Torii T. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles[J]. Lab DN a Chip, 2008, 8(2): 287-293. |
41 | Nisisako T, Ando T, Hatsuzawa T. High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces[J]. Lab on a Chip, 2012, 12(18): 3426-3435. |
42 | Gelin P, Bihi I, Ziemecka I, et al. Microfluidic device for high-throughput production of monodisperse droplets[J]. Industrial & Engineering Chemistry Research, 2020, 59(28): 12784-12791. |
43 | Tetradis-Meris G, Rossetti D, Pulido de Torres C, et al. Novel parallel integration of microfluidic device network for emulsion formation[J]. Industrial & Engineering Chemistry Research, 2009, 48(19): 8881-8889. |
44 | Kawakatsu T, Trägårdh G, Trägårdh C, et al. The effect of the hydrophobicity of microchannels and components in water and oil phases on droplet formation in microchannel water-in-oil emulsification[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 179(1): 29-37. |
45 | Dangla R, Kayi S C, Baroud C N. Droplet microfluidics driven by gradients of confinement[J]. PNAS, 2013, 110(3): 853-858. |
46 | Eggersdorfer M L, Seybold H, Ofner A, et al. Wetting controls of droplet formation in step emulsification[J]. PNAS, 2018, 115(38): 9479-9484. |
47 | Liu Z W, Duan C, Jiang S K, et al. Microfluidic step emulsification techniques based on spontaneous transformation mechanism: a review[J]. Journal of Industrial and Engineering Chemistry, 2020, 92: 18-40. |
48 | Shi Z, Lai X, Sun C, et al. Step emulsification in microfluidic droplet generation: mechanisms and structures[J]. Chemical Communications, 2020, 56(64): 9056-9066. |
49 | Amstad E, Chemama M, Eggersdorfer M, et al. Robust scalable high throughput production of monodisperse drops[J]. Lab on a Chip, 2016, 16(21): 4163-4172. |
50 | Håti A G, Szymborski T R, Steinacher M, et al. Production of monodisperse drops from viscous fluids[J]. Lab on a Chip, 2018, 18(4): 648-654. |
51 | Teston E, Hingot V, Faugeras V, et al. A versatile and robust microfluidic device for capillary-sized simple or multiple emulsions production[J]. Biomedical Microdevices, 2018, 20(4): 1-12. |
52 | de Rutte J M, Koh J, Di Carlo D. Scalable high-throughput production of modular microgels for in situ assembly of microporous tissue scaffolds[J]. Advanced Functional Materials, 2019, 29(25): 1900071. |
53 | Zoratto N, Di Lisa D, de Rutte J, et al. In situ forming microporous gelatin methacryloyl hydrogel scaffolds from thermostable microgels for tissue engineering[J]. Bioengineering & Translational Medicine, 2020, 5(3): e10180. |
54 | Sugiura S, Nakajima M, Tong J H, et al. Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique[J]. Journal of Colloid and Interface Science, 2000, 227(1): 95-103. |
55 | Kobayashi I, Takano T, Maeda R, et al. Straight-through microchannel devices for generating monodisperse emulsion droplets several microns in size[J]. Microfluidics and Nanofluidics, 2008, 4(3): 167-177. |
56 | van Dijke K, Veldhuis G, Schroën K, et al. Parallelized edge-based droplet generation (EDGE) devices[J]. Lab on a Chip, 2009, 9(19): 2824-2830. |
57 | Sahin S, Schroën K. Partitioned EDGE devices for high throughput production of monodisperse emulsion droplets with two distinct sizes[J]. Lab on a Chip, 2015, 15(11): 2486-2495. |
58 | Chung C H Y, Cui B B, Song R Y, et al. Scalable production of monodisperse functional microspheres by multilayer parallelization of high aspect ratio microfluidic channels[J]. Micromachines, 2019, 10(9): 592. |
59 | Eberhardt A, Bošković D, Loebbecke S, et al. Customized design of scalable microfluidic droplet generators using step-emulsification methods[J]. Chemical Engineering & Technology, 2019, 42(10): 2195-2201. |
60 | ten Klooster S, Sahin S, Schroën K. Monodisperse droplet formation by spontaneous and interaction based mechanisms in partitioned EDGE microfluidic device[J]. Scientific Reports, 2019, 9: 7820. |
61 | Eggersdorfer M L, Zheng W, Nawar S, et al. Tandem emulsification for high-throughput production of double emulsions[J]. Lab on a Chip, 2017, 17(5): 936-942. |
62 | Ofner A, Mattich I, Hagander M, et al. Controlled massive encapsulation via tandem step emulsification in glass[J]. Advanced Functional Materials, 2019, 29(4): 1806821. |
63 | Kobayashi I, Wada Y, Uemura K, et al. Microchannel emulsification for mass production of uniform fine droplets: integration of microchannel arrays on a chip[J]. Microfluidics and Nanofluidics, 2010, 8(2): 255-262. |
64 | Ofner A, Moore D G, Rühs P A, et al. High-throughput step emulsification for the production of functional materials using a glass microfluidic device[J]. Macromolecular Chemistry and Physics, 2017, 218(2): 1600472. |
65 | Vladisavljević G T, Ekanem E E, Zhang Z L, et al. Long-term stability of droplet production by microchannel (step) emulsification in microfluidic silicon chips with large number of terraced microchannels[J]. Chemical Engineering Journal, 2018, 333: 380-391. |
66 | Stolovicki E, Ziblat R, Weitz D A. Throughput enhancement of parallel step emulsifier devices by shear-free and efficient nozzle clearance[J]. Lab on a Chip, 2018, 18(1): 132-138. |
67 | Leshansky A M, Pismen L M. Breakup of drops in a microfluidic T junction[J]. Physics of Fluids, 2009, 21(2): 023303. |
68 | Link D R, Anna S L, Weitz D A, et al. Geometrically mediated breakup of drops in microfluidic devices[J]. Physical Review Letters, 2004, 92(5): 054503. |
69 | Adamson D N, Mustafi D, Zhang J X, et al. Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices[J]. Lab on a Chip, 2006, 6(9): 1178-1186. |
70 | Vladisavljević G T, Khalid N, Neves M A, et al. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery[J]. Advanced Drug Delivery Reviews, 2013, 65(11/12): 1626-1663. |
71 | Abate A R, Weitz D A. Faster multiple emulsification with drop splitting[J]. Lab on a Chip, 2011, 11(11): 1911. |
72 | Hoang D A, Haringa C, Portela L M, et al. Design and characterization of bubble-splitting distributor for scaled-out multiphase microreactors[J]. Chemical Engineering Journal, 2014, 236: 545-554. |
73 | Kim C M, Kim G M. Fabrication of 512-channel geometrical passive breakup device for high-throughput microdroplet production[J]. Micromachines, 2019, 10(10): 709. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[3] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[4] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[5] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[6] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[7] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[8] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[9] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[10] | Lu DENG, Xiaojie JU, Wenjie ZHANG, Rui XIE, Wei WANG, Zhuang LIU, Dawei PAN, Liangyin CHU. Controllable preparation of radioactive chitosan embolic microspheres by microfluidic method [J]. CIESC Journal, 2023, 74(4): 1781-1794. |
[11] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[12] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
[13] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[14] | Xingyu YANG, You MA, Chunying ZHU, Taotao FU, Youguang MA. Study on liquid-liquid distribution in comb parallel microchannels [J]. CIESC Journal, 2023, 74(2): 698-706. |
[15] | Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers [J]. CIESC Journal, 2023, 74(2): 796-806. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||