CIESC Journal ›› 2022, Vol. 73 ›› Issue (5): 2140-2148.DOI: 10.11949/0438-1157.20211692
• Energy and environmental engineering • Previous Articles Next Articles
Jiayi WANG1,2(),Chuigang FAN1,2,Songgeng LI1,3()
Received:
2021-11-29
Revised:
2022-01-27
Online:
2022-05-24
Published:
2022-05-05
Contact:
Songgeng LI
通讯作者:
李松庚
作者简介:
王佳怡(1996—),女,硕士研究生,基金资助:
CLC Number:
Jiayi WANG, Chuigang FAN, Songgeng LI. Role of carbon-oxygen complexes on low temperature reduction of NO by coal char[J]. CIESC Journal, 2022, 73(5): 2140-2148.
王佳怡, 范垂钢, 李松庚. 碳氧官能团对煤焦低温还原NO的影响[J]. 化工学报, 2022, 73(5): 2140-2148.
Add to citation manager EndNote|Ris|BibTeX
工业分析/%(质量,ad) | 元素分析/%(质量,ad) | BET表征 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | N | O① | S | 比表面积/(m2·g-1) | 孔容/(cm3·g-1) | 平均孔径/nm | ||
0.76 | 6.64 | 13.95 | 78.66 | 85.38 | 2.34 | 1.41 | 3.35 | 0.13 | 14.59 | 0.018 | 5.026 |
Table 1 Proximate and ultimate analysis of coal char and BET analysis
工业分析/%(质量,ad) | 元素分析/%(质量,ad) | BET表征 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | N | O① | S | 比表面积/(m2·g-1) | 孔容/(cm3·g-1) | 平均孔径/nm | ||
0.76 | 6.64 | 13.95 | 78.66 | 85.38 | 2.34 | 1.41 | 3.35 | 0.13 | 14.59 | 0.018 | 5.026 |
Fe2O3/% | Al2O3/% | CaO/ % | MgO/% | SiO2/ % | TiO2/% | SO3/ % | K2O/ % | Na2O/% | 合计/% |
---|---|---|---|---|---|---|---|---|---|
6.69 | 17.10 | 22.92 | 1.85 | 38.39 | 0.88 | 9.02 | 0.75 | 0.67 | 98.30 |
Table 2 Metallic oxides mass fraction of char ash
Fe2O3/% | Al2O3/% | CaO/ % | MgO/% | SiO2/ % | TiO2/% | SO3/ % | K2O/ % | Na2O/% | 合计/% |
---|---|---|---|---|---|---|---|---|---|
6.69 | 17.10 | 22.92 | 1.85 | 38.39 | 0.88 | 9.02 | 0.75 | 0.67 | 98.30 |
状态 | 反应气氛 | AC—O/Aarom | AC |
---|---|---|---|
反应前 | — | 0 | 0.49 |
反应后 | 0%(体积)O2 | 0.12 | 1.76 |
1%(体积)O2 | 0.43 | 2.62 | |
5%(体积)O2 | 0.63 | 2.64 |
Table 3 Oxygen-containing groups contents of different chars
状态 | 反应气氛 | AC—O/Aarom | AC |
---|---|---|---|
反应前 | — | 0 | 0.49 |
反应后 | 0%(体积)O2 | 0.12 | 1.76 |
1%(体积)O2 | 0.43 | 2.62 | |
5%(体积)O2 | 0.63 | 2.64 |
半焦 | C—C, C—H | C—O | R2C | O | C—K | |||||
---|---|---|---|---|---|---|---|---|---|---|
BE/eV | Prop./ %(mol) | BE/eV | Prop./ %(mol) | BE/eV | Prop./ %(mol) | BE/eV | Prop./ %(mol) | BE/eV | Prop./ %(mol) | |
SM | 284.8 | 81.92 | 286.3 | 12.10 | 287.5 | 0.41 | 289.0 | 4.61 | 296.2 | 0.96 |
SM-2%MgO | 284.8 | 59.46 | 286.3 | 12.14 | 287.5 | 23.01 | 289.0 | 0.86 | 296.2 | 4.53 |
SM-2%K2O | 284.8 | 57.42 | 286.3 | 17.05 | 287.5 | 0.00 | 289.0 | 13.96 | 296.2 | 11.56 |
SM-0.5%Na2O | 284.8 | 74.45 | 286.3 | 15.31 | 287.5 | 0.49 | 289.0 | 8.97 | 296.2 | 0.79 |
Table 4 Functionalities of chars estimated by XPS measurement
半焦 | C—C, C—H | C—O | R2C | O | C—K | |||||
---|---|---|---|---|---|---|---|---|---|---|
BE/eV | Prop./ %(mol) | BE/eV | Prop./ %(mol) | BE/eV | Prop./ %(mol) | BE/eV | Prop./ %(mol) | BE/eV | Prop./ %(mol) | |
SM | 284.8 | 81.92 | 286.3 | 12.10 | 287.5 | 0.41 | 289.0 | 4.61 | 296.2 | 0.96 |
SM-2%MgO | 284.8 | 59.46 | 286.3 | 12.14 | 287.5 | 23.01 | 289.0 | 0.86 | 296.2 | 4.53 |
SM-2%K2O | 284.8 | 57.42 | 286.3 | 17.05 | 287.5 | 0.00 | 289.0 | 13.96 | 296.2 | 11.56 |
SM-0.5%Na2O | 284.8 | 74.45 | 286.3 | 15.31 | 287.5 | 0.49 | 289.0 | 8.97 | 296.2 | 0.79 |
评价指标 | C—O | R2C | O |
---|---|---|---|
X | 0.9989 | 0.2921 | 0.9115 |
S | 0.9999 | 0.1025 | 0.6096 |
CO/CO x | 0.9662 | 0.1923 | 0.7920 |
Table 5 Correlation coefficients of C(O) complexes with NO-char evaluating indexes
评价指标 | C—O | R2C | O |
---|---|---|---|
X | 0.9989 | 0.2921 | 0.9115 |
S | 0.9999 | 0.1025 | 0.6096 |
CO/CO x | 0.9662 | 0.1923 | 0.7920 |
1 | 中华人民共和国生态环境部. 2019年中国生态环境统计年报[R]. 北京: 中华人民共和国生态环境部, 2021. |
Ministry of Ecology and Environment of the People’s Republic of China. Report on the State of the Ecology and Environment in China 2019[R]. Beijing: Ministry of Ecology and Environment of the People’s Republic of China, 2021. | |
2 | Rezaei F, Rownaghi A A, Monjezi S, et al. SO x /NO x removal from flue gas streams by solid adsorbents: a review of current challenges and future directions[J]. Energy & Fuels, 2015, 29(9): 5467-5486. |
3 | Illán-Gómez M J, Linares-Solano A, Radovic L R, et al. NO reduction by activated carbons (7): Some mechanistic aspects of uncatalyzed and catalyzed reaction[J]. Energy & Fuels, 1996, 10(1): 158-168. |
4 | Gupta H, Fan L S. Reduction of nitric oxide from combustion flue gas by bituminous coal char in the presence of oxygen[J]. Industrial & Engineering Chemistry Research, 2003, 42(12): 2536-2543. |
5 | Yan W X, Li S G, Fan C G, et al. Effect of surface carbon-oxygen complexes during NO reduction by coal char[J]. Fuel, 2017, 204: 40-46. |
6 | DeGroot W F, Richards G N. Gasification of cellulosic chars in oxygen and in nitrogen oxides[J]. Carbon, 1991, 29(2): 179-183. |
7 | Pevida C, Arenillas A, Rubiera F, et al. Heterogeneous reduction of nitric oxide on synthetic coal chars[J]. Fuel, 2005, 84(17): 2275-2279. |
8 | 赵宗彬, 李文, 李保庆. 半焦制备条件对其还原NO反应性的影响[J]. 煤炭学报, 2002, 27(2): 179-183. |
Zhao Z B, Li W, Li B Q. Effect of preparation conditions on gasification reactivity of char with NO[J]. Journal of China Coal Society, 2002, 27(2): 179-183. | |
9 | Cetin E, Moghtaderi B, Gupta R, et al. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars[J]. Fuel, 2004, 83(16): 2139-2150. |
10 | Suzuki T, Kyotani T, Tomita A. Study on the carbon-nitric oxide reaction in the presence of oxygen[J]. Industrial & Engineering Chemistry Research, 1994, 33(11): 2840-2845. |
11 | Aarna I, Suuberg E M. The role of carbon monoxide in the NO-Carbon reaction[J]. Energy & Fuels, 1999, 13(6): 1145-1153. |
12 | Tsubouchi N, Ohtsuka Y. Nitrogen release during high temperature pyrolysis of coals and catalytic role of calcium in N2 formation[J]. Fuel, 2002, 81(18): 2335-2342. |
13 | García-García A, Chinchón-Yepes S, Linares-Solano A, et al. NO reduction by potassium-containing coal briquettes. Effect of mineral matter content and coal rank[J]. Energy & Fuels, 1997, 11(2): 292-298. |
14 | Zhao Z B, Qiu J S, Li W, et al. Influence of mineral matter in coal on decomposition of NO over coal chars and emission of NO during char combustion[J]. Fuel, 2003, 82(8): 949-957. |
15 | Yamashita H, Tomita A, Yamada H, et al. Influence of char surface chemistry on the reduction of nitric oxide with chars[J]. Energy & Fuels, 1993, 7(1): 85-89. |
16 | Yang J, Mestl G, Herein D, et al. Reaction of NO with carbonaceous materials (1): Reaction and adsorption of NO on ashless carbon black[J]. Carbon, 2000, 38(5): 715-727. |
17 | Yang J, Mestl G, Herein D, et al. Reaction of NO with carbonaceous materials (2): Effect of oxygen on the reaction of NO with ashless carbon black[J]. Carbon, 2000, 38(5): 729-740. |
18 | 闫文霞. 半焦直接还原氮氧化物机理与实验研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2017. |
Yan W X. Mechanism study of NO x reduction by char in flue gas[D]. Beijing: University of Chinese Academy of Sciences(Institute of Process Engineering), 2017. | |
19 | Zhu X L, Sheng C D. Evolution of the char structure of lignite under heat treatment and its influences on combustion reactivity[J]. Energy & Fuels, 2010, 24(1): 152-159. |
20 | Wang B, Sun L S, Su S, et al. Char structural evolution during pyrolysis and its influence on combustion reactivity in air and oxy-fuel conditions[J]. Energy & Fuels, 2012, 26(3): 1565-1574. |
21 | Tay H L, Li C Z. Changes in char reactivity and structure during the gasification of a Victorian brown coal: comparison between gasification in O2 and CO2 [J]. Fuel Processing Technology, 2010, 91(8): 800-804. |
22 | Bueno-López A, Caballero-Suárez J A, García-García A. Kinetic model for the NO x reduction process by potassium containing coal char pellets at moderate temperature (350—450℃) in the presence of O2 and H2O[J]. Fuel Processing Technology, 2006, 87(5): 429-436. |
23 | Xiao Y, Guo T, Shu C M, et al. Effects of oxygen concentrations on the coal oxidation characteristics and functional groups[J]. Journal of Thermal Analysis and Calorimetry, 2020, 142(2): 899-912. |
24 | Wang Z Z, Sun R, Ismail T M, et al. Characterization of coal char surface behavior after a heterogeneous oxidative treatment[J]. Fuel, 2017, 210: 154-164. |
25 | He X Q, Liu X F, Nie B S, et al. FTIR and Raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel, 2017, 206: 555-563. |
26 | Chen Y Y, Mastalerz M, Schimmelmann A. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy[J]. International Journal of Coal Geology, 2012, 104: 22-33. |
27 | Wu X Y, Song Q, Zhao H B, et al. Catalytic mechanism of inherent potassium on the char-NO reaction[J]. Energy & Fuels, 2015, 29(11): 7566-7571. |
28 | Yang N, Yu J L, Dou J X, et al. The effects of oxygen and metal oxide catalysts on the reduction reaction of NO with lignite char during combustion flue gas cleaning[J]. Fuel Processing Technology, 2016, 152: 102-107. |
29 | Shu Y, Zhang F, Wang F, et al. Catalytic reduction of NO x by biomass-derived activated carbon supported metals[J]. Chinese Journal of Chemical Engineering, 2018, 26(10): 2077-2083. |
30 | 范垂钢, 李松庚. 半焦脱硝体系中重要碳氧中间体结构及其作用[J]. 华电技术, 2020, 42(10): 28-35. |
Fan C G, Li S G. Structure and function of important C/O intermediates in semi-coke DeNO x systems[J]. Huadian Technology, 2020, 42(10): 28-35. | |
31 | Zhao Z B, Li W, Li B Q. Catalytic reduction of NO by coal chars loaded with Ca and Fe in various atmospheres[J]. Fuel, 2002, 81(11): 1559-1564. |
32 | Bueno-López A, García-García A, Caballero-Suárez J A. Development of a kinetic model for the NO x reduction process by potassium-containing coal pellets[J]. Environmental Science & Technology, 2002, 36(24): 5447-5454. |
[1] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[2] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[3] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[4] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[5] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[6] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[7] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[8] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[9] | Enzhe BI, Shuangxi LI, Lianxiang SHA, Dengyu LIU, Kaifang CHEN. Multi-objective optimization analysis of high temperature dynamic pressure split ring seal parameters [J]. CIESC Journal, 2023, 74(6): 2565-2579. |
[10] | Yanmei ZHANG, Tao YUAN, Jiang LI, Yajie LIU, Zhanxue SUN. Study on the construction of high-efficient SRB mixed microflora and its performance under acid stress [J]. CIESC Journal, 2023, 74(6): 2599-2610. |
[11] | Nan HU, Demin TAO, Zhaolan YANG, Xuebing WANG, Xiangxu ZHANG, Yulong LIU, Dexin DING. Remediation of percolate water from uranium tailings reservoir by coupling iron-carbon micro-electrolysis and sulfate reducing bacteria [J]. CIESC Journal, 2023, 74(6): 2655-2667. |
[12] | Xinyue WANG, Junjie WANG, Sixian CAO, Cui WANG, Lingkun LI, Hongyu WU, Jing HAN, Hao WU. Effect of glass primary container surface modification on monoclonal antibody aggregates induced by mechanical stress [J]. CIESC Journal, 2023, 74(6): 2580-2588. |
[13] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[14] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[15] | Yuhao CHEN, Xiaoping CHEN, Jiliang MA, Cai LIANG. Gaseous pollutants emissions from rotary kiln combustion of municipal sewage sludge [J]. CIESC Journal, 2023, 74(5): 2170-2178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||