CIESC Journal ›› 2022, Vol. 73 ›› Issue (6): 2732-2741.DOI: 10.11949/0438-1157.20220110
• Energy and environmental engineering • Previous Articles Next Articles
Received:
2022-01-19
Revised:
2022-02-23
Online:
2022-06-30
Published:
2022-06-05
Contact:
Mo ZHENG
通讯作者:
郑默
作者简介:
郑默(1988—),女,博士,副研究员,基金资助:
CLC Number:
Mo ZHENG, Xiaoxia LI. Revealing reaction compromise in competition for volatile radicals during coal pryolysis via ReaxFF MD simulation[J]. CIESC Journal, 2022, 73(6): 2732-2741.
郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741.
1 | 刘振宇, 李清波. 煤化工在“碳中和”历程中不可或缺[N]. 中国科学报, 2021-08-23(3). |
Liu Z Y, Li Q B. Coal chemical engineering is indispensable in the process of “carbon neutralization”[N]. China Science Daily, 2021-08-23(3). | |
2 | Miura K. Mild conversion of coal for producing valuable chemicals[J]. Fuel Processing Technology, 2000, 62(2/3): 119-135. |
3 | Solomon P R, Serio M A, Suuberg E M. Coal pyrolysis: experiments, kinetic rates and mechanisms[J]. Progress in Energy and Combustion Science, 1992, 18(2): 133-220. |
4 | 周国江, 刘竹涛, 战金辉, 等. 温度梯度与产物流动对先锋褐煤热解产物分布的影响[J]. 化工学报, 2018, 69(6): 2672-2680. |
Zhou G J, Liu Z T, Zhan J H, et al. Effects of temperature gradient and product flow on distribution of pyrolysis products of Xianfeng lignite[J]. CIESC Journal, 2018, 69(6): 2672-2680. | |
5 | 刘振宇. 煤化学的前沿与挑战: 结构与反应[J]. 中国科学: 化学, 2014, 44(9): 1431-1439. |
Liu Z Y. Advancement in coal chemistry: structure and reactivity[J]. Scientia Sinica Chimica, 2014, 44(9): 1431-1439. | |
6 | Solomon P R, Fletcher T H, Pugmire R J. Progress in coal pyrolysis[J]. Fuel, 1993, 72(5): 587-597. |
7 | He W J, Liu Z Y, Liu Q Y, et al. Behaviors of radical fragments in tar generated from pyrolysis of 4 coals[J]. Fuel, 2014, 134: 375-380. |
8 | He W J, Liu Z Y, Liu Q Y, et al. Behavior of radicals during solvent extraction of three low rank bituminous coals[J]. Fuel Processing Technology, 2017, 156: 221-227. |
9 | Shi L, Liu Q Y, Guo X J, et al. Pyrolysis of coal in TGA: extent of volatile condensation in crucible[J]. Fuel Processing Technology, 2014, 121: 91-95. |
10 | Zhou Q Q, Liu Q Y, Shi L, et al. Behaviors of coking and radicals during reaction of volatiles generated from fixed-bed pyrolysis of a lignite and a subbituminous coal[J]. Fuel Processing Technology, 2017, 161: 304-310. |
11 | Li J H, Ge W, Wang W, et al. Focusing on mesoscales: from the energy-minimization multiscale model to mesoscience[J]. Current Opinion in Chemical Engineering, 2016, 13: 10-23. |
12 | Wang J W, Zhao B D, Li J H. Toward a mesoscale-structure-based kinetic theory for heterogeneous gas-solid flow: particle velocity distribution function[J]. AIChE Journal, 2016, 62(8): 2649-2657. |
13 | Mathews J P, van Duin A C T, Chaffee A L. The utility of coal molecular models[J]. Fuel Processing Technology, 2011, 92(4): 718-728. |
14 | Mathews J P, Chaffee A L. The molecular representations of coal — a review[J]. Fuel, 2012, 96: 1-14. |
15 | van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. |
16 | Senftle T P, Hong S, Islam M M, et al. The ReaxFF reactive force-field: development, applications and future directions[J]. Npj Computational Materials, 2016, 2: 15011. |
17 | Castro-Marcano F, Russo M F, van Duin A C T, et al. Pyrolysis of a large-scale molecular model for Illinois No.6 coal using the ReaxFF reactive force field[J]. Journal of Analytical and Applied Pyrolysis, 2014, 109: 79-89. |
18 | 冯炜, 高红凤, 王贵, 等. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531. |
Feng W, Gao H F, Wang G, et al. Molecular model and pyrolysis simulation of Zaoquan coal[J]. CIESC Journal, 2019, 70(4): 1522-1531. | |
19 | Salmon E, van Duin A C T, Lorant F, et al. Early maturation processes in coal(Ⅱ): Reactive dynamics simulations using the ReaxFF reactive force field on Morwell brown coal structures[J]. Organic Geochemistry, 2009, 40(12): 1195-1209. |
20 | Bhoi S, Banerjee T, Mohanty K. Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF[J]. Fuel, 2014, 136: 326-333. |
21 | Hong D K, Cao Z, Guo X. Effect of calcium on the secondary reactions of tar from Zhundong coal pyrolysis: a molecular dynamics simulation using ReaxFF[J]. Journal of Analytical and Applied Pyrolysis, 2019, 137: 246-252. |
22 | Gao M J, Li X X, Guo X, et al. Dynamic migration mechanism of organic oxygen in Fugu coal pyrolysis by large-scale ReaxFF molecular dynamics[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105109. |
23 | Salmon E, van Duin A C T, Lorant F, et al. Thermal decomposition process in algaenan of Botryococcus braunii race L(Ⅱ): Molecular dynamics simulations using the ReaxFF reactive force field[J]. Organic Geochemistry, 2009, 40(3): 416-427. |
24 | Castro-Marcano F, Kamat A M, Russo M F, et al. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field[J]. Combustion and Flame, 2012, 159(3): 1272-1285. |
25 | Zheng M, Li X X, Guo L. Algorithms of GPU-enabled reactive force field (ReaxFF) molecular dynamics[J]. Journal of Molecular Graphics and Modelling, 2013, 41: 1-11. |
26 | Zheng M, Li X X, Wang M J, et al. Dynamic profiles of tar products during Naomaohu coal pyrolysis revealed by large-scale reactive molecular dynamic simulation[J]. Fuel, 2019, 253: 910-920. |
27 | Liu J, Li X X, Guo L, et al. Reaction analysis and visualization of ReaxFF molecular dynamics simulations[J]. Journal of Molecular Graphics and Modelling, 2014, 53: 13-22. |
28 | Zheng M, Li X X, Liu J, et al. Pyrolysis of Liulin coal simulated by GPU-based ReaxFF MD with cheminformatics analysis[J]. Energy & Fuels, 2014, 28(1): 522-534. |
29 | Gao M J, Li X X, Guo L. Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics[J]. Fuel Processing Technology, 2018, 178: 197-205. |
30 | Gao M J, Li X X, Ren C X, et al. Construction of a multicomponent molecular model of Fugu coal for ReaxFF-MD pyrolysis simulation[J]. Energy & Fuels, 2019, 33(4): 2848-2858. |
31 | Zheng M, Pan Y, Wang Z, et al. Capturing the dynamic profiles of products in Hailaer brown coal pyrolysis with reactive molecular simulations and experiments[J]. Fuel, 2020, 268: 117290. |
32 | Li X X, Zheng M, Ren C X, et al. ReaxFF molecular dynamics simulations of thermal reactivity of various fuels in pyrolysis and combustion[J]. Energy & Fuels, 2021, 35(15): 11707-11739. |
33 | Zheng M, Li X X, Nie F G, et al. Investigation of model scale effects on coal pyrolysis using ReaxFF MD simulation[J]. Molecular Simulation, 2017, 43(13/14/15/16): 1081-1088. |
34 | Zheng M, Li X X, Nie F G, et al. Investigation of overall pyrolysis stages for Liulin bituminous coal by large-scale ReaxFF molecular dynamics[J]. Energy & Fuels, 2017, 31(4): 3675-3683. |
35 | Zhang T T, Li X X, Qiao X J, et al. Initial mechanisms for an overall behavior of lignin pyrolysis through large-scale ReaxFF molecular dynamics simulations[J]. Energy & Fuels, 2016, 30(4): 3140-3150. |
36 | Zhang T T, Li X X, Guo L. Initial reactivity of linkages and monomer rings in lignin pyrolysis revealed by ReaxFF molecular dynamics[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2017, 33(42): 11646-11657. |
37 | Zheng M, Wang Z, Li X X, et al. Initial reaction mechanisms of cellulose pyrolysis revealed by ReaxFF molecular dynamics[J]. Fuel, 2016, 177: 130-141. |
38 | Mueller J E, van Duin A C T, W A Ⅲ Goddard. Application of the ReaxFF reactive force field to reactive dynamics of hydrocarbon chemisorption and decomposition[J]. The Journal of Physical Chemistry C, 2010, 114(12): 5675-5685. |
39 | 韩君易, 李晓霞, 郭力, 等. ReaxFF MD模拟的物种和化学反应自动分类及可视化[J]. 计算机与应用化学, 2015, 32(5): 519-526. |
Han J Y, Li X X, Guo L, et al. Automatic classification and visualization of species and reactions obtained from ReaxFF MD simulations[J]. Computers and Applied Chemistry, 2015, 32(5): 519-526. | |
40 | 贺巧鑫, 任春醒, 李晓霞, 等. ReaxFF MD模拟结果分析中化学反应路径网络的发现[J]. 计算机与应用化学, 2019, 36(4): 299-303. |
He Q X, Ren C X, Li X X, et al. Discovery of chemical reaction networks in analysis of ReaxFF MD simulations[J]. Computers and Applied Chemistry, 2019, 36(4): 299-303. | |
41 | 唐钰杰, 郑默, 任春醒, 等. ReaxFF MD局部区域反应追踪与物理性质可视化分析[J]. 物理化学学报, 2021, 37(10): 77-87. |
Tang Y J, Zheng M, Ren C X, et al. Visualized reaction tracking and physical property analysis for a picked 3D area in a reactive molecular dynamics simulation system[J]. Acta Physico-Chimica Sinica, 2021, 37(10): 77-87. |
[1] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[2] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[3] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[4] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[5] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[6] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[7] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[8] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[9] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[10] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[11] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[12] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[13] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[14] | Songtao YANG, Dongyang LI, Yuqing NIU, Xingang LI, Shaohui KANG, Hong LI, Kaikai YE, Zhiquan ZHOU, Xin GAO. Molecular simulation progress in studying thermodynamic properties and potential functions of fluorides [J]. CIESC Journal, 2022, 73(9): 3828-3840. |
[15] | Yi LIAO, Yabin NIU, Yanqiu PAN, Lu YU. Modeling the effects of mixed surfactants on the behaviors and properties of the oil-water interface with molecular dynamics [J]. CIESC Journal, 2022, 73(9): 4003-4014. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 765
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 424
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||