CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 3131-3144.DOI: 10.11949/0438-1157.20211830
• Process system engineering • Previous Articles Next Articles
Zhe SUN1(),Huaqiang JIN3,Kang LI1,Jiangping GU3,Yuejin HUANG1,Xi SHEN1,2()
Received:
2021-12-26
Revised:
2022-03-22
Online:
2022-08-01
Published:
2022-07-05
Contact:
Xi SHEN
孙哲1(),金华强3,李康1,顾江萍3,黄跃进1,沈希1,2()
通讯作者:
沈希
作者简介:
孙哲(1989—),男,博士,助理研究员,基金资助:
CLC Number:
Zhe SUN, Huaqiang JIN, Kang LI, Jiangping GU, Yuejin HUANG, Xi SHEN. Fault diagnosis method of refrigeration and air-conditioning system based on digitized knowledge representation[J]. CIESC Journal, 2022, 73(7): 3131-3144.
孙哲, 金华强, 李康, 顾江萍, 黄跃进, 沈希. 基于知识数据化表达的制冷空调系统故障诊断方法[J]. 化工学报, 2022, 73(7): 3131-3144.
Add to citation manager EndNote|Ris|BibTeX
网络层 | 输出尺寸 | 参数数量 |
---|---|---|
卷积层 | (none, 9, 6, 32) | 416 |
批归一化 | (none, 9, 6, 32) | 128 |
Dropout层 | (none, 9, 6, 32) | 0 |
卷积层 | (none, 6, 5, 64) | 16448 |
批归一化 | (none, 6, 5, 64) | 256 |
Dropout层 | (none, 6, 5, 64) | 0 |
卷积层 | (none, 4, 4, 128) | 49280 |
批归一化 | (none, 4, 4, 128) | 512 |
Dropout层 | (none, 4, 4, 128) | 0 |
Flatten层 | (none, 2048) | 0 |
全连接层 | (none, 128) | 262272 |
Softmax层 | (none, 6) | 774 |
Table 1 The network structure of deep diagnosis model
网络层 | 输出尺寸 | 参数数量 |
---|---|---|
卷积层 | (none, 9, 6, 32) | 416 |
批归一化 | (none, 9, 6, 32) | 128 |
Dropout层 | (none, 9, 6, 32) | 0 |
卷积层 | (none, 6, 5, 64) | 16448 |
批归一化 | (none, 6, 5, 64) | 256 |
Dropout层 | (none, 6, 5, 64) | 0 |
卷积层 | (none, 4, 4, 128) | 49280 |
批归一化 | (none, 4, 4, 128) | 512 |
Dropout层 | (none, 4, 4, 128) | 0 |
Flatten层 | (none, 2048) | 0 |
全连接层 | (none, 128) | 262272 |
Softmax层 | (none, 6) | 774 |
故障类别 | Level1程度 | Level2程度 | Level3程度 | Level4程度 |
---|---|---|---|---|
冷凝器结垢(cf) | 堵塞10%的换热管 | 堵塞20%的换热管 | 堵塞30%的换热管 | 堵塞40%的换热管 |
冷却水流量减少(fwc) | 水流量减少10% | 水流量减少20% | 水流量减少30% | 水流量减少40% |
冷冻水流量减少(fwe) | 水流量减少10% | 水流量减少20% | 水流量减少30% | 水流量减少40% |
含非凝性气体(nc) | 含1%非凝性气体 | 含2%非凝性气体 | 含3%非凝性气体 | 含4%非凝性气体 |
制冷剂泄漏(rl) | 泄漏10%制冷剂 | 泄漏20%制冷剂 | 泄漏30%制冷剂 | 泄漏40%制冷剂 |
制冷剂过充(ro) | 过充10%制冷剂 | 过充20%制冷剂 | 过充30%制冷剂 | 过充40%制冷剂 |
Table 2 Simulated conditions for faults of various severity
故障类别 | Level1程度 | Level2程度 | Level3程度 | Level4程度 |
---|---|---|---|---|
冷凝器结垢(cf) | 堵塞10%的换热管 | 堵塞20%的换热管 | 堵塞30%的换热管 | 堵塞40%的换热管 |
冷却水流量减少(fwc) | 水流量减少10% | 水流量减少20% | 水流量减少30% | 水流量减少40% |
冷冻水流量减少(fwe) | 水流量减少10% | 水流量减少20% | 水流量减少30% | 水流量减少40% |
含非凝性气体(nc) | 含1%非凝性气体 | 含2%非凝性气体 | 含3%非凝性气体 | 含4%非凝性气体 |
制冷剂泄漏(rl) | 泄漏10%制冷剂 | 泄漏20%制冷剂 | 泄漏30%制冷剂 | 泄漏40%制冷剂 |
制冷剂过充(ro) | 过充10%制冷剂 | 过充20%制冷剂 | 过充30%制冷剂 | 过充40%制冷剂 |
故障类别 | TEI-TEO | TCO-TCI | PRE | PRC | TRCsub | Tshsuc | Tshdis |
---|---|---|---|---|---|---|---|
cf | ● | ↑ | ● | ↑↑ | ● | ● | ● |
fwc | ● | ↑↑↑ | ↑ | ↑↑ | ↑↑ | ↓ | ● |
fwe | ↑↑↑ | ● | ↑ | ● | ● | ↓ | ● |
nc | ● | ↑ | ↑ | ↑↑↑ | ↑↑↑↑ | ● | ↑↑ |
rl | ● | ● | ● | ↓↓ | ↓↓↓ | ● | ● |
ro | ● | ? | ↓ | ↑↑ | ↑↑↑ | ● | ↑ |
Table 3 Multi-dimensional deviation vector of failure
故障类别 | TEI-TEO | TCO-TCI | PRE | PRC | TRCsub | Tshsuc | Tshdis |
---|---|---|---|---|---|---|---|
cf | ● | ↑ | ● | ↑↑ | ● | ● | ● |
fwc | ● | ↑↑↑ | ↑ | ↑↑ | ↑↑ | ↓ | ● |
fwe | ↑↑↑ | ● | ↑ | ● | ● | ↓ | ● |
nc | ● | ↑ | ↑ | ↑↑↑ | ↑↑↑↑ | ● | ↑↑ |
rl | ● | ● | ● | ↓↓ | ↓↓↓ | ● | ● |
ro | ● | ? | ↓ | ↑↑ | ↑↑↑ | ● | ↑ |
参数 | 误差均值 |
---|---|
TEI-TEO | 0.045 |
TCO-TCI | 0.043 |
PRE | 0.152 |
PRC | 0.395 |
TRCsub | 0.213 |
Tshsuc | 0.169 |
Tshdis | 0.355 |
Table 4 The absolute mean of the prediction error of the benchmark model
参数 | 误差均值 |
---|---|
TEI-TEO | 0.045 |
TCO-TCI | 0.043 |
PRE | 0.152 |
PRC | 0.395 |
TRCsub | 0.213 |
Tshsuc | 0.169 |
Tshdis | 0.355 |
故障类别 | MMD值 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
无噪声 | 噪声/2 | 噪声/1 | 噪声/0.5 | 噪声/0.25 | 噪声/0.15 | 噪声/0.10 | 噪声/0.05 | 噪声/0.025 | 噪声/0.01 | |
正常(normal) | 0 | 0.546 | 0.216 | 0.161 | 0.216 | 0.235 | 0.233 | 0.228 | 0.225 | 0.224 |
冷凝器结垢(cf) | 0.752 | 0.643 | 0.46 | 0.228 | 0.174 | 0.205 | 0.23 | 0.233 | 0.228 | 0.225 |
冷却水流量减少(fwc) | 0.513 | 0.52 | 0.512 | 0.483 | 0.42 | 0.319 | 0.267 | 0.207 | 0.225 | 0.231 |
冷冻水流量减少(fwe) | 0.4 | 0.396 | 0.406 | 0.352 | 0.272 | 0.202 | 0.179 | 0.205 | 0.227 | 0.229 |
含非凝性气体(nc) | 0.55 | 0.55 | 0.528 | 0.514 | 0.448 | 0.371 | 0.318 | 0.251 | 0.256 | 0.26 |
制冷剂泄漏(rl) | 0.777 | 0.712 | 0.59 | 0.364 | 0.215 | 0.208 | 0.225 | 0.236 | 0.229 | 0.225 |
制冷剂过充(ro) | 0.578 | 0.553 | 0.546 | 0.477 | 0.325 | 0.237 | 0.207 | 0.221 | 0.235 | 0.227 |
Table 5 MMD value of generated samples and real samples under different strategies
故障类别 | MMD值 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
无噪声 | 噪声/2 | 噪声/1 | 噪声/0.5 | 噪声/0.25 | 噪声/0.15 | 噪声/0.10 | 噪声/0.05 | 噪声/0.025 | 噪声/0.01 | |
正常(normal) | 0 | 0.546 | 0.216 | 0.161 | 0.216 | 0.235 | 0.233 | 0.228 | 0.225 | 0.224 |
冷凝器结垢(cf) | 0.752 | 0.643 | 0.46 | 0.228 | 0.174 | 0.205 | 0.23 | 0.233 | 0.228 | 0.225 |
冷却水流量减少(fwc) | 0.513 | 0.52 | 0.512 | 0.483 | 0.42 | 0.319 | 0.267 | 0.207 | 0.225 | 0.231 |
冷冻水流量减少(fwe) | 0.4 | 0.396 | 0.406 | 0.352 | 0.272 | 0.202 | 0.179 | 0.205 | 0.227 | 0.229 |
含非凝性气体(nc) | 0.55 | 0.55 | 0.528 | 0.514 | 0.448 | 0.371 | 0.318 | 0.251 | 0.256 | 0.26 |
制冷剂泄漏(rl) | 0.777 | 0.712 | 0.59 | 0.364 | 0.215 | 0.208 | 0.225 | 0.236 | 0.229 | 0.225 |
制冷剂过充(ro) | 0.578 | 0.553 | 0.546 | 0.477 | 0.325 | 0.237 | 0.207 | 0.221 | 0.235 | 0.227 |
故障类别 | 故障严重程度 | 正确率/% | |||||
---|---|---|---|---|---|---|---|
无噪声 | 噪声/0.5 | 噪声/0.25 | 噪声/0.15 | 噪声/0.10 | 噪声/0.05 | ||
正常(normal) | 无 | 78.87 | 91.52 | 98.76 | 98.00 | 86.78 | 40.33 |
冷凝器结垢 (cf) | 堵塞10%的换热管-Level1 | 39.32 | 43.72 | 47.84 | 53.88 | 51.71 | 51.17 |
堵塞20%的换热管-Level2 | 59.37 | 61.04 | 64.32 | 83.32 | 69.66 | 56.69 | |
堵塞30%的换热管-Level3 | 61.79 | 66.72 | 65.88 | 79.84 | 68.96 | 59.23 | |
堵塞40%的换热管-Level4 | 75.04 | 70.68 | 73.00 | 83.72 | 79.54 | 58.95 | |
冷却水流量减少 (fwc) | 水流量减少10%-Level1 | 94.11 | 82.32 | 98.92 | 99.20 | 88.06 | 80.27 |
水流量减少20%-Level2 | 93.80 | 64.52 | 99.84 | 100.0 | 100.0 | 99.64 | |
水流量减少30%-Level3 | 99.92 | 99.92 | 100.0 | 99.52 | 100.0 | 100.0 | |
水流量减少40%-Level4 | 99.65 | 100.0 | 100.0 | 99.84 | 100.0 | 100.0 | |
冷冻水流量减少 (fwe) | 水流量减少10%-Level1 | 60.32 | 73.00 | 89.28 | 65.44 | 67.05 | 52.20 |
水流量减少20%-Level2 | 80.39 | 99.52 | 99.76 | 99.80 | 99.92 | 97.69 | |
水流量减少30%-Level3 | 92.91 | 99.80 | 99.96 | 100.0 | 100.0 | 100.0 | |
水流量减少40%-Level4 | 98.20 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | |
含非凝性气体 (nc) | 含1%非凝性气体-Level1 | 64.80 | 70.56 | 66.64 | 61.16 | 65.24 | 67.35 |
含2%非凝性气体-Level2 | 68.31 | 77.60 | 79.24 | 75.08 | 72.66 | 70.45 | |
含3%非凝性气体-Level3 | 71.80 | 78.28 | 81.12 | 72.92 | 75.59 | 73.87 | |
含4%非凝性气体-Level4 | 80.27 | 88.24 | 97.44 | 83.76 | 94.00 | 99.19 | |
制冷剂泄漏 (rl) | 泄漏10%制冷剂-Level1 | 5.56 | 1.68 | 0.08 | 0.00 | 8.55 | 27.68 |
泄漏20%制冷剂-Level2 | 11.29 | 25.16 | 4.48 | 2.48 | 10.76 | 27.60 | |
泄漏30%制冷剂-Level3 | 71.81 | 94.36 | 98.60 | 97.48 | 97.11 | 46.43 | |
泄漏40%制冷剂-Level4 | 93.87 | 99.60 | 99.96 | 99.00 | 97.78 | 89.84 | |
制冷剂过充 (ro) | 过充10%制冷剂-Level1 | 55.19 | 39.96 | 55.16 | 88.40 | 44.72 | 24.05 |
过充20%制冷剂-Level2 | 66.24 | 51.08 | 59.36 | 91.84 | 56.69 | 28.80 | |
过充30%制冷剂-Level3 | 68.67 | 57.04 | 77.40 | 93.84 | 91.60 | 77.61 | |
过充40%制冷剂-Level4 | 60.81 | 51.44 | 76.88 | 92.12 | 88.86 | 76.91 | |
总体 | Level1 | 56.88 | 57.54 | 65.24 | 66.58 | 58.87 | 49.01 |
Level2 | 65.47 | 67.21 | 72.25 | 78.65 | 70.92 | 60.17 | |
Level3 | 77.97 | 83.95 | 88.82 | 91.66 | 88.58 | 71.07 | |
Level4 | 83.82 | 85.93 | 92.29 | 93.78 | 92.42 | 80.74 | |
Level1~Level4 | 71.03 | 73.65 | 79.65 | 82.67 | 77.70 | 65.25 |
Table 6 Comparison of fault diagnosis accuracy under different generation strategies
故障类别 | 故障严重程度 | 正确率/% | |||||
---|---|---|---|---|---|---|---|
无噪声 | 噪声/0.5 | 噪声/0.25 | 噪声/0.15 | 噪声/0.10 | 噪声/0.05 | ||
正常(normal) | 无 | 78.87 | 91.52 | 98.76 | 98.00 | 86.78 | 40.33 |
冷凝器结垢 (cf) | 堵塞10%的换热管-Level1 | 39.32 | 43.72 | 47.84 | 53.88 | 51.71 | 51.17 |
堵塞20%的换热管-Level2 | 59.37 | 61.04 | 64.32 | 83.32 | 69.66 | 56.69 | |
堵塞30%的换热管-Level3 | 61.79 | 66.72 | 65.88 | 79.84 | 68.96 | 59.23 | |
堵塞40%的换热管-Level4 | 75.04 | 70.68 | 73.00 | 83.72 | 79.54 | 58.95 | |
冷却水流量减少 (fwc) | 水流量减少10%-Level1 | 94.11 | 82.32 | 98.92 | 99.20 | 88.06 | 80.27 |
水流量减少20%-Level2 | 93.80 | 64.52 | 99.84 | 100.0 | 100.0 | 99.64 | |
水流量减少30%-Level3 | 99.92 | 99.92 | 100.0 | 99.52 | 100.0 | 100.0 | |
水流量减少40%-Level4 | 99.65 | 100.0 | 100.0 | 99.84 | 100.0 | 100.0 | |
冷冻水流量减少 (fwe) | 水流量减少10%-Level1 | 60.32 | 73.00 | 89.28 | 65.44 | 67.05 | 52.20 |
水流量减少20%-Level2 | 80.39 | 99.52 | 99.76 | 99.80 | 99.92 | 97.69 | |
水流量减少30%-Level3 | 92.91 | 99.80 | 99.96 | 100.0 | 100.0 | 100.0 | |
水流量减少40%-Level4 | 98.20 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | |
含非凝性气体 (nc) | 含1%非凝性气体-Level1 | 64.80 | 70.56 | 66.64 | 61.16 | 65.24 | 67.35 |
含2%非凝性气体-Level2 | 68.31 | 77.60 | 79.24 | 75.08 | 72.66 | 70.45 | |
含3%非凝性气体-Level3 | 71.80 | 78.28 | 81.12 | 72.92 | 75.59 | 73.87 | |
含4%非凝性气体-Level4 | 80.27 | 88.24 | 97.44 | 83.76 | 94.00 | 99.19 | |
制冷剂泄漏 (rl) | 泄漏10%制冷剂-Level1 | 5.56 | 1.68 | 0.08 | 0.00 | 8.55 | 27.68 |
泄漏20%制冷剂-Level2 | 11.29 | 25.16 | 4.48 | 2.48 | 10.76 | 27.60 | |
泄漏30%制冷剂-Level3 | 71.81 | 94.36 | 98.60 | 97.48 | 97.11 | 46.43 | |
泄漏40%制冷剂-Level4 | 93.87 | 99.60 | 99.96 | 99.00 | 97.78 | 89.84 | |
制冷剂过充 (ro) | 过充10%制冷剂-Level1 | 55.19 | 39.96 | 55.16 | 88.40 | 44.72 | 24.05 |
过充20%制冷剂-Level2 | 66.24 | 51.08 | 59.36 | 91.84 | 56.69 | 28.80 | |
过充30%制冷剂-Level3 | 68.67 | 57.04 | 77.40 | 93.84 | 91.60 | 77.61 | |
过充40%制冷剂-Level4 | 60.81 | 51.44 | 76.88 | 92.12 | 88.86 | 76.91 | |
总体 | Level1 | 56.88 | 57.54 | 65.24 | 66.58 | 58.87 | 49.01 |
Level2 | 65.47 | 67.21 | 72.25 | 78.65 | 70.92 | 60.17 | |
Level3 | 77.97 | 83.95 | 88.82 | 91.66 | 88.58 | 71.07 | |
Level4 | 83.82 | 85.93 | 92.29 | 93.78 | 92.42 | 80.74 | |
Level1~Level4 | 71.03 | 73.65 | 79.65 | 82.67 | 77.70 | 65.25 |
3 | Kim W, Katipamula S. A review of fault detection and diagnostics methods for building systems[J]. Science and Technology for the Built Environment, 2018, 24(1): 3-21. |
4 | 王姝婷. 基于贝叶斯网络单元的全空气空调系统故障检测与诊断方法研究[D]. 杭州: 浙江大学, 2021. |
Wang S T. Research on fault detection and diagnosis of all-air air conditioning systems using Bayesian network-based diagnostic units[D]. Hangzhou: Zhejiang University, 2021. | |
5 | Sun Z, Jin H Q, Gu J P, et al. Gradual fault early stage diagnosis for air source heat pump system using deep learning techniques[J]. International Journal of Refrigeration, 2019, 107: 63-72. |
6 | Sun Z, Jin H Q, Gu J P, et al. Studies on the online intelligent diagnosis method of undercharging sub-health air source heat pump water heater[J]. Applied Thermal Engineering, 2020, 169: 114957. |
7 | Wang Z W, Wang Z W, Gu X W, et al. Feature selection based on Bayesian network for chiller fault diagnosis from the perspective of field applications[J]. Applied Thermal Engineering, 2018, 129: 674-683. |
8 | van de Sand R, Corasaniti S, Reiff-Stephan J. Data-driven fault diagnosis for heterogeneous chillers using domain adaptation techniques[J]. Control Engineering Practice, 2021, 112: 104815. |
9 | 刘旭婷, 李益国, 孙栓柱, 等. 基于稀疏局部嵌入深度卷积网络的冷水机组故障诊断方法[J]. 化工学报, 2018, 69(12): 5155-5163. |
Liu X T, Li Y G, Sun S Z, et al. Fault diagnosis of chillers using sparsely local embedding deep convolutional neural network[J]. CIESC Journal, 2018, 69(12): 5155-5163. | |
10 | 王路瑶, 吴斌, 杜志敏, 等. 基于长短期记忆神经网络的数据中心空调系统传感器故障诊断[J]. 化工学报, 2018, 69(S2): 252-259. |
Wang L Y, Wu B, Du Z M, et al. Sensor fault detection and diagnosis for data center air conditioning system based on LSTM neural network[J]. CIESC Journal, 2018, 69(S2): 252-259. | |
11 | Xiao F, Zhao Y, Wen J, et al. Bayesian network based FDD strategy for variable air volume terminals[J]. Automation in Construction, 2014, 41: 106-118. |
12 | Fan C, Xiao F, Zhao Y. A short-term building cooling load prediction method using deep learning algorithms[J]. Applied Energy, 2017, 195: 222-233. |
13 | Zhao Y, Li T, Fan C, et al. A proactive fault detection and diagnosis method for variable-air-volume terminals in building air conditioning systems[J]. Energy and Buildings, 2019, 183: 527-537. |
14 | Li T, Zhao Y, Zhang C, et al. A semantic model-based fault detection approach for building energy systems[J]. Building and Environment, 2022, 207: 108548. |
15 | Li Z F, Shi S B, Chen H X, et al. Machine learning based diagnosis strategy for refrigerant charge amount malfunction of variable refrigerant flow system[J]. International Journal of Refrigeration, 2020, 110: 95-105. |
16 | Hu M, Chen H, Shen L, et al. A machine learning Bayesian network for refrigerant charge faults of variable refrigerant flow air conditioning system[J]. Energy and Buildings, 2018, 158: 668-676. |
17 | Guo Y, Tan Z, Chen H, et al. Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving[J]. Applied Energy, 2018, 225: 732-745. |
18 | Fan Y Q, Cui X Y, Han H, et al. Chiller fault diagnosis with field sensors using the technology of imbalanced data[J]. Applied Thermal Engineering, 2019, 159: 113933. |
19 | 张钹, 朱军, 苏航. 迈向第三代人工智能[J]. 中国科学: 信息科学, 2020, 50(9): 1281-1302. |
Zhang B, Zhu J, Su H. Toward the third generation of artificial intelligence[J]. Scientia Sinica (Informationis), 2020, 50(9): 1281-1302. | |
20 | Liang J, Du R. Model-based fault detection and diagnosis of HVAC systems using support vector machine method[J]. International Journal of Refrigeration, 2007, 30(6): 1104-1114. |
1 | 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15. |
Hu A G. China's goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology (Social Sciences Edition), 2021, 21(3): 1-15. | |
21 | Fan B, Du Z M, Jin X Q, et al. A hybrid FDD strategy for local system of AHU based on artificial neural network and wavelet analysis[J]. Building and Environment, 2010, 45(12): 2698-2708. |
22 | Zhu Y, Jin X, Du Z. Fault diagnosis for sensors in air handling unit based on neural network pre-processed by wavelet and fractal[J]. Energy and Buildings, 2012, 44: 7-16. |
23 | Beghi A, Brignoli R, Cecchinato L, et al. Data-driven fault detection and diagnosis for HVAC water chillers[J]. Control Engineering Practice, 2016, 53: 79-91. |
2 | Zhao Y, Li T T, Zhang X J, et al. Artificial intelligence-based fault detection and diagnosis methods for building energy systems: advantages, challenges and the future[J]. Renewable and Sustainable Energy Reviews, 2019, 109: 85-101. |
24 | Li D, Hu G, Spanos C J. A data-driven strategy for detection and diagnosis of building chiller faults using linear discriminant analysis[J]. Energy and Buildings, 2016, 128: 519-529. |
25 | Li G, Hu Y, Chen H, et al. An improved fault detection method for incipient centrifugal chiller faults using the PCA-R-SVDD algorithm[J]. Energy and Buildings, 2016, 116: 104-113. |
26 | Srivastava N, Hinton G E, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958. |
27 | Iyer A, Nath S, Sarawagi S. Maximum mean discrepancy for class ratio estimation: convergence bounds and kernel selection[C]// Proceedings of the 31st International Conference on Machine Learning. New York: PMLR, 2014: 530-538. |
28 | Rüschendorf L. The Wasserstein distance and approximation theorems[J]. Probability Theory and Related Fields, 1985, 70(1): 117-129. |
29 | Obukhov A, Krasnyanskiy M. Quality assessment method for GAN based on modified metrics inception score and Fréchet inception distance[C]//Proceedings of the Computational Methods in Systems and Software. Berlin: Springer, 2020: 102-114. |
30 | 孙哲. 热泵系统亚健康及其智能在线诊断方法研究[D]. 杭州: 浙江工业大学, 2020. |
Sun Z. Study on the sub-health operation and its intelligent online diagnosis method for heat pump systems[D]. Hangzhou: Zhejiang University of Technology, 2020 | |
31 | Comstock M, Braun J. Development of analysis tools for the evaluation of fault detection and diagnostics in chillers [R]. West Lafayette, IN: Purdue University, 1999: 99-20. |
32 | Comstock M C, Braun J E, Groll E A. The sensitivity of chiller performance to common faults[J]. HVAC&R Research, 2001, 7(3): 263-279. |
[1] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[2] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[3] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[4] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[5] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[6] | Ye XU, Wenjun HUANG, Junpeng MI, Chuanchuan SHEN, Jianxiang JIN. Surge diagnosis method of centrifugal compressor based on multi-source data fusion [J]. CIESC Journal, 2023, 74(7): 2979-2987. |
[7] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[8] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
[9] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[10] | Qian MING, Yi GAO, Jian HU, Shengjie LI, Jinjiang WANG. Virtual sensing method for leakage fault of heat exchanger [J]. CIESC Journal, 2023, 74(4): 1836-1846. |
[11] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[12] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[13] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[14] | Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model [J]. CIESC Journal, 2023, 74(3): 1205-1215. |
[15] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||