CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 3120-3130.DOI: 10.11949/0438-1157.20220096
• Process system engineering • Previous Articles Next Articles
Xinjie ZHOU(),Jianlin WANG(),Xingcong AI,Enguang SUI,Rutong WANG
Received:
2022-01-16
Revised:
2022-04-14
Online:
2022-08-01
Published:
2022-07-05
Contact:
Jianlin WANG
通讯作者:
王建林
作者简介:
周新杰(1995—),男,博士研究生,基金资助:
CLC Number:
Xinjie ZHOU, Jianlin WANG, Xingcong AI, Enguang SUI, Rutong WANG. IDPC-RVM based online prediction of quality variables for multimode batch processes[J]. CIESC Journal, 2022, 73(7): 3120-3130.
周新杰, 王建林, 艾兴聪, 随恩光, 王汝童. 基于IDPC-RVM的多模态间歇过程质量变量在线预测[J]. 化工学报, 2022, 73(7): 3120-3130.
Add to citation manager EndNote|Ris|BibTeX
过程变量 | 单位 | 过程变量 | 单位 |
---|---|---|---|
通风率 | L/h | 二氧化碳浓度 | mmol/L |
搅拌功率 | W | pH | |
底物流加速率 | L/h | 反应器温度 | K |
底物流温度 | K | 产热量 | kcal/h |
底物浓度 | g/L | 加酸流速 | ml/h |
溶解氧浓度 | mol/L | 加碱流速 | ml/h |
生物质浓度 | g/L | 加冷却水流速 | L/h |
青霉素浓度 | g/L | 加热水流速 | L/h |
反应器体积 | L |
Table 1 Variables of penicillin fermentation process
过程变量 | 单位 | 过程变量 | 单位 |
---|---|---|---|
通风率 | L/h | 二氧化碳浓度 | mmol/L |
搅拌功率 | W | pH | |
底物流加速率 | L/h | 反应器温度 | K |
底物流温度 | K | 产热量 | kcal/h |
底物浓度 | g/L | 加酸流速 | ml/h |
溶解氧浓度 | mol/L | 加碱流速 | ml/h |
生物质浓度 | g/L | 加冷却水流速 | L/h |
青霉素浓度 | g/L | 加热水流速 | L/h |
反应器体积 | L |
方法 | SM #1 | TM #1 | SM #2 | TM #2 | SM #3 | TM #3 | SM #4 |
---|---|---|---|---|---|---|---|
SCFCM | 1~38 | 39~48 | 49~93 | 94~110 | 111~146 | 147~226 | 227~400 |
DPC | 1~40 | — | 41~283 | — | 284~343 | — | 344~400 |
IDPC | 1~28 | 29~49 | 50~98 | 99~117 | 118~177 | 178~199 | 200~400 |
Table 2 Final mode partitioning results of different methods
方法 | SM #1 | TM #1 | SM #2 | TM #2 | SM #3 | TM #3 | SM #4 |
---|---|---|---|---|---|---|---|
SCFCM | 1~38 | 39~48 | 49~93 | 94~110 | 111~146 | 147~226 | 227~400 |
DPC | 1~40 | — | 41~283 | — | 284~343 | — | 344~400 |
IDPC | 1~28 | 29~49 | 50~98 | 99~117 | 118~177 | 178~199 | 200~400 |
方法 | 平均RMSE | 平均R2 |
---|---|---|
RVM | 0.0592 | 0.9815 |
SCFCM-RVM | 0.0167 | 0.9986 |
DPC-RVM | 0.0382 | 0.9924 |
IDPC-RVM | 0.0093 | 0.9995 |
Table 3 Mean RMSE and mean R2 of different methods
方法 | 平均RMSE | 平均R2 |
---|---|---|
RVM | 0.0592 | 0.9815 |
SCFCM-RVM | 0.0167 | 0.9986 |
DPC-RVM | 0.0382 | 0.9924 |
IDPC-RVM | 0.0093 | 0.9995 |
1 | Chang P, Lu R W. Process monitoring of batch process based on overcomplete broad learning network[J]. Engineering Applications of Artificial Intelligence, 2021, 99: 104139. |
2 | Chu F, Wang J C, Zhao X, et al. Transfer learning for nonlinear batch process operation optimization[J]. Journal of Process Control, 2021, 101: 11-23. |
3 | Chu F, Cheng X, Jia R D, et al. Final quality prediction method for new batch processes based on improved JYKPLS process transfer model[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 183: 1-10. |
4 | Yamaguchi T, Yamashita Y. Quality prediction for multi-grade batch process using sparse flexible clustered multi-task learning[J]. Computers & Chemical Engineering, 2021, 150: 107320. |
5 | Zhu J L, Gao F R. Improved nonlinear quality estimation for multiphase batch processes based on relevance vector machine with neighborhood component variable selection[J]. Industrial & Engineering Chemistry Research, 2018, 57(2): 666-676. |
6 | Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211-244. |
7 | Qiu K P, Wang J L, Wang R T, et al. Soft sensor development based on kernel dynamic time warping and a relevant vector machine for unequal-length batch processes[J]. Expert Systems with Applications, 2021, 182: 115223. |
8 | Zhao H T. Order-information-based phase partition and fault detection for batch processes[J]. Industrial & Engineering Chemistry Research, 2018, 57(23): 7905-7921. |
9 | Guo J Y, Yuan T M, Li Y. Fault detection of multimode process based on local neighbor normalized matrix[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 154: 162-175. |
10 | Zhu J L, Wang Y Q, Zhou D H, et al. Batch process modeling and monitoring with local outlier factor[J]. IEEE Transactions on Control Systems Technology, 2019, 27(4): 1552-1565. |
11 | Chang P, Qiao J F, Lu R W, et al. Multiphase batch process monitoring based on higher-order cumulant analysis[J]. The Canadian Journal of Chemical Engineering, 2020, 98(2): 513-524. |
12 | Wang J L, Qiu K P, Liu W M, et al. Unsupervised-multiscale-sequential-partitioning and multiple-SVDD-model-based process-monitoring method for multiphase batch processes[J]. Industrial & Engineering Chemistry Research, 2018, 57(51): 17437-17451. |
13 | Dong W W, Yao Y, Gao F R. Phase analysis and identification method for multiphase batch processes with partitioning multi-way principal component analysis (MPCA) model[J]. Chinese Journal of Chemical Engineering, 2012, 20(6): 1121-1127. |
14 | Ye X F, Wang P L, Yang Z Y. Time sequential phase partition and modeling method for fault detection of batch processes[J]. IEEE Access, 2017, 6: 1249-1260. |
15 | Zhao C H, Sun Y X. Step-wise sequential phase partition (SSPP) algorithm based statistical modeling and online process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 125: 109-120. |
16 | Li W Q, Zhao C H, Gao F R. Sequential time slice alignment based unequal-length phase identification and modeling for fault detection of irregular batches[J]. Industrial & Engineering Chemistry Research, 2015, 54(41): 10020-10030. |
17 | Yu W K, Zhao C H, Zhang S M. A two-step parallel phase partition algorithm for monitoring multiphase batch processes with limited batches[J]. IFAC-PapersOnLine, 2017, 50(1): 2750-2755. |
18 | Liu J X, Liu T, Zhang J. Window-based stepwise sequential phase partition for nonlinear batch process monitoring[J]. Industrial & Engineering Chemistry Research, 2016, 55(34): 9229-9243. |
19 | Zhao C H, Gao F R. Statistical modeling and online fault detection for multiphase batch processes with analysis of between-phase relative changes[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 130: 58-67. |
20 | Lu N Y, Gao F R, Wang F L. Sub-PCA modeling and on-line monitoring strategy for batch processes[J]. AIChE Journal, 2004, 50(1): 255-259. |
21 | 张雷, 张小刚, 陈华. 基于Gath-Geva算法和核极限学习机的多阶段间歇过程软测量[J]. 化工学报, 2018, 69(6): 2576-2585. |
Zhang L, Zhang X G, Chen H. Soft sensors for multi-stage batch processes based on Gath-Geva algorithm and kernel extreme learning machine[J]. CIESC Journal, 2018, 69(6): 2576-2585. | |
22 | Luo L J, Bao S Y, Mao J F, et al. Phase partition and phase-based process monitoring methods for multiphase batch processes with uneven durations[J]. Industrial & Engineering Chemistry Research, 2016, 55(7): 2035-2048. |
23 | Luo L J, Bao S Y, Mao J F, et al. Fuzzy phase partition and hybrid modeling based quality prediction and process monitoring methods for multiphase batch processes[J]. Industrial & Engineering Chemistry Research, 2016, 55(14): 4045-4058. |
24 | Luo L J. Monitoring uneven multistage/multiphase batch processes using trajectory-based fuzzy phase partition and hybrid MPCA models[J]. The Canadian Journal of Chemical Engineering, 2019, 97(1): 178-187. |
25 | 刘伟旻, 王建林, 邱科鹏, 等. 基于DHSC的多模态间歇过程测量数据异常检测方法[J]. 化工学报, 2017, 68(11): 4201-4207. |
Liu W M, Wang J L, Qiu K P, et al. Method for detecting abnormal data in multimode batch processes based on dynamic hypersphere structure change[J]. CIESC Journal, 2017, 68(11): 4201-4207. | |
26 | Rodriguez A, Laio A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496. |
27 | Flores K G, Garza S E. Density peaks clustering with gap-based automatic center detection[J]. Knowledge-Based Systems, 2020, 206: 106350. |
28 | Xu M L, Li Y H, Li R X, et al. EADP: an extended adaptive density peaks clustering for overlapping community detection in social networks[J]. Neurocomputing, 2019, 337: 287-302. |
29 | Guo R X, Zhang N, Wang J Q, et al. Phase partition and identification based on a two-step method for batch process[J]. Transactions of the Institute of Measurement and Control, 2018, 40(16): 4472-4483. |
30 | 邵昌昇, 楼巍, 严利民. 高维数据中的相似性度量算法的改进[J]. 计算机技术与发展, 2011, 21(2): 1-4. |
Shao C S, Lou W, Yan L M. Optimization of algorithm of similarity measurement in high-dimensional data[J]. Computer Technology and Development, 2011, 21(2): 1-4. | |
31 | Birol G, Ündey C, Çinar A. A modular simulation package for fed-batch fermentation: penicillin production[J]. Computers & Chemical Engineering, 2002, 26(11): 1553-1565. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[3] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[4] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[5] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[6] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[7] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[8] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[9] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[10] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[11] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[12] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[13] | Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge [J]. CIESC Journal, 2023, 74(7): 3018-3027. |
[14] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[15] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||