CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 3262-3272.DOI: 10.11949/0438-1157.20220141
• Energy and environmental engineering • Previous Articles Next Articles
Xingfu YANG1(),Wen CHEN1,Jie XIAO2,Xiaodong CHEN2
Received:
2022-01-19
Revised:
2022-04-09
Online:
2022-08-01
Published:
2022-07-05
Contact:
Xingfu YANG
通讯作者:
杨兴富
作者简介:
杨兴富(1988—),男,硕士,工程师,CLC Number:
Xingfu YANG, Wen CHEN, Jie XIAO, Xiaodong CHEN. Application of reaction engineering approach in modelling vacuum baking of lithium battery[J]. CIESC Journal, 2022, 73(7): 3262-3272.
杨兴富, 陈文, 肖杰, 陈晓东. 反应工程方法在锂电池真空干燥模拟上的应用[J]. 化工学报, 2022, 73(7): 3262-3272.
Add to citation manager EndNote|Ris|BibTeX
组别 | 温度/℃ | 真空度/kPa |
---|---|---|
1 | 85 | -97 |
2 | 95 | -97 |
3 | 85 | -101 |
4 | 95 | -101 |
Table 1 Experimental conditions of vacuum drying
组别 | 温度/℃ | 真空度/kPa |
---|---|---|
1 | 85 | -97 |
2 | 95 | -97 |
3 | 85 | -101 |
4 | 95 | -101 |
项目 | 组1 | 组2 | 组3 | 组4 |
---|---|---|---|---|
相关系数平方R2 | 0.99909 | 0.99950 | 0.99889 | 0.99893 |
均方根误差RMSE | 9.99408 | 10.69929 | 13.09409 | 9.70212 |
平均相对误差MRE | 0.04018 | 0.07066 | 0.08872 | 0.07039 |
Table 2 Deviation analysis
项目 | 组1 | 组2 | 组3 | 组4 |
---|---|---|---|---|
相关系数平方R2 | 0.99909 | 0.99950 | 0.99889 | 0.99893 |
均方根误差RMSE | 9.99408 | 10.69929 | 13.09409 | 9.70212 |
平均相对误差MRE | 0.04018 | 0.07066 | 0.08872 | 0.07039 |
变量 | 数值 | 数据来源 |
---|---|---|
换气 | 有/无 | 实验 |
传质系数 | 文献[ | |
多孔介质平均直径 | 15 μm | 实验 |
孔隙率 | 0.3 | 实验 |
初始水含量 | 700 mg/kg | 实验 |
Table 3 Initial value of characteristic variable
变量 | 数值 | 数据来源 |
---|---|---|
换气 | 有/无 | 实验 |
传质系数 | 文献[ | |
多孔介质平均直径 | 15 μm | 实验 |
孔隙率 | 0.3 | 实验 |
初始水含量 | 700 mg/kg | 实验 |
温度/℃ | 平衡干基含水率Xb |
---|---|
20 | 0.000300 |
75 | 0.000105 |
85 | 0.000086 |
95 | 0.000080 |
105 | 0.000070 |
Table 4 Equilibrium moisture content(dry basis) of lithium cobalt oxide battery
温度/℃ | 平衡干基含水率Xb |
---|---|
20 | 0.000300 |
75 | 0.000105 |
85 | 0.000086 |
95 | 0.000080 |
105 | 0.000070 |
实验条件 | 实测水含量/ (mg/kg) | 预测水含量/ (mg/kg) | 偏差/ (mg/kg) |
---|---|---|---|
85℃&干燥200 min | 73.4 | 79.9 | 6.5 |
85℃&干燥150 min | 88.0 | 85.4 | -2.6 |
85℃&干燥90 min | 99.9 | 108.5 | 8.6 |
82℃&干燥90 min | 119.5 | 116.1 | -3.4 |
80℃&干燥85 min | 129.7 | 132.7 | 3.0 |
85℃&干燥65 min | 143.8 | 146.7 | 2.9 |
83℃&干燥65 min | 158.3 | 164.5 | 6.2 |
83℃&干燥60 min | 165.9 | 185.5 | 19.6 |
Table 5 Comparison of measured and predicted moisture content under different experimental conditions
实验条件 | 实测水含量/ (mg/kg) | 预测水含量/ (mg/kg) | 偏差/ (mg/kg) |
---|---|---|---|
85℃&干燥200 min | 73.4 | 79.9 | 6.5 |
85℃&干燥150 min | 88.0 | 85.4 | -2.6 |
85℃&干燥90 min | 99.9 | 108.5 | 8.6 |
82℃&干燥90 min | 119.5 | 116.1 | -3.4 |
80℃&干燥85 min | 129.7 | 132.7 | 3.0 |
85℃&干燥65 min | 143.8 | 146.7 | 2.9 |
83℃&干燥65 min | 158.3 | 164.5 | 6.2 |
83℃&干燥60 min | 165.9 | 185.5 | 19.6 |
1 | 肖顺华, 章明方. 水分对锂离子电池性能的影响[J]. 应用化学, 2005, 22(7): 764-767. |
Xiao S H, Zhang M F. Influence of water mass fraction on performance of lithium ion batteries[J]. Chinese Journal of Applied Chemistry, 2005, 22(7): 764-767. | |
2 | 朱静, 于申军, 陈志奎, 等. 水分对锂离子电池性能的影响研究[J]. 华南师范大学学报(自然科学版), 2009, 41(S1): 245-247. |
Zhu J, Yu S J, Chen Z K, et al. Effect of water contamination on the electrochemical performance of lithium-ion battery[J]. Journal of South China Normal University (Natural Science Edition), 2009, 41(S1): 245-247. | |
3 | 田文风. 锂电池极片真空干燥工艺仿真及优化[D]. 武汉: 华中科技大学, 2017. |
Tian W F. Simulation and optimization of lithium battery electrode vacuum drying process[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
4 | 陈帅. 磷酸铁锂动力电池真空干燥过程的传热传质模拟研究[D]. 沈阳: 东北大学, 2017. |
Chen S. Simulation of heat and mass transfer in vacuum drying process of LiFePO4 power battery[D]. Shenyang: Northeastern University, 2017. | |
5 | Hussain M M, Dincer I. Two-dimensional heat and moisture transfer analysis of a cylindrical moist object subjected to drying: a finite-difference approach[J]. International Journal of Heat and Mass Transfer, 2003, 46(21): 4033-4039. |
6 | Hussain M M, Dincer I. Numerical simulation of two-dimensional heat and moisture transfer during drying of a rectangular object[J]. Numerical Heat Transfer, Part A: Applications, 2003, 43(8): 867-878. |
7 | Nadi F, Rahimi G H, Younsi R, et al. Numerical simulation of vacuum drying by Luikov's equations[J]. Drying Technology, 2012, 30(2): 197-206. |
8 | Murru M, Giorgio G, Montomoli S, et al. Model-based scale-up of vacuum contact drying of pharmaceutical compounds[J]. Chemical Engineering Science, 2011, 66(21): 5045-5054. |
9 | Hou L X, Zhou X, Wang S J. Numerical analysis of heat and mass transfer in kiwifruit slices during combined radio frequency and vacuum drying[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119704. |
10 | Chen X D, Xie G Z. Fingerprints of the drying behaviour of particulate or thin layer food materials established using a reaction engineering model[J]. Food and Bioproducts Processing, 1997, 75(4): 213-222. |
11 | Chen X D, Lin S X Q. Air drying of milk droplet under constant and time-dependent conditions[J]. AIChE Journal, 2005, 51(6): 1790-1799. |
12 | Lin S X Q, Chen X D. A model for drying of an aqueous lactose droplet using the reaction engineering approach[J]. Drying Technology, 2006, 24(11): 1329-1334. |
13 | Patel K, Chen X D, Jeantet R, et al. One-dimensional simulation of co-current, dairy spray drying systems—pros and cons[J]. Dairy Science & Technology, 2010, 90(2/3): 181-210. |
14 | Putranto A, Chen X D, Xiao Z Y, et al. Mathematical modeling of intermittent and convective drying of rice and coffee using the reaction engineering approach (REA)[J]. Journal of Food Engineering, 2011, 105(4): 638-646. |
15 | Putranto A, Chen X D. Spatial reaction engineering approach as an alternative for nonequilibrium multiphase mass-transfer model for drying of food and biological materials[J]. AIChE Journal, 2013, 59(1): 55-67. |
16 | Putranto A, Chen X D. An assessment on modeling drying processes: equilibrium multiphase model and the spatial reaction engineering approach (S-REA)[J]. Chemical Engineering Research and Design, 2015, 94: 660-672. |
17 | Yang X F, Xiao J, Woo M W, et al. Three-dimensional numerical investigation of a mono-disperse droplet spray dryer: validation aspects and multi-physics exploration[J]. Drying Technology, 2015, 33(6): 742-756. |
18 | Putranto A, Chen X D. Vacuum drying of food materials modeled and explored using the reaction engineering approach (REA) framework[J]. Drying Technology, 2021: 1-9. |
19 | Nield D A, Bejan A. Convection in Porous Media[M]. New York: Springer, 2013. |
20 | Bird R B, Stewart W E, Lightfoot E N. Transport Phenomena[M]. 2nd ed. New York: Wiley, 2002. |
21 | 张智贤, 阴育新. 锂离子电池材料含水量测试方法研究[J]. 天津科技, 2015, 42(12): 15-17. |
Zhang Z X, Yin Y X. On moisture testing method for lithium ion battery materials[J]. Tianjin Science & Technology, 2015, 42(12): 15-17. | |
22 | Peleg M. Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms1[J]. Journal of Food Process Engineering, 1993, 16(1): 21-37. |
23 | Foster K D, Bronlund J E, ( Tony) Paterson A H J. The prediction of moisture sorption isotherms for dairy powders[J]. International Dairy Journal, 2005, 15(4): 411-418. |
24 | Langklotz U, Schneider M, Michaelis A. Water uptake of tape-cast cathodes for lithium ion batteries[J]. Journal of Ceramic Science and Technology, 2013, 4(2): 69-76. |
25 | Eser J C, Wirsching T, Weidler P G, et al. Moisture adsorption behavior in anodes for Li-ion batteries[J]. Energy Technology, 2020, 8(2): 1801162. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[3] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[4] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[5] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[6] | Huafu ZHANG, Lige TONG, Zhentao ZHANG, Junling YANG, Li WANG, Junhao ZHANG. Recent progress and development trend of mechanical vapor compression evaporation technology [J]. CIESC Journal, 2023, 74(S1): 8-24. |
[7] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[8] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[9] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[10] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[11] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[12] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[13] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[14] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[15] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||