CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 3156-3165.DOI: 10.11949/0438-1157.20220349
• Process system engineering • Previous Articles Next Articles
Le ZHOU1(),Chengkai SHEN1,Chao WU1,Beiping HOU1(),Zhihuan SONG2
Received:
2022-03-07
Revised:
2022-04-05
Online:
2022-08-01
Published:
2022-07-05
Contact:
Beiping HOU
通讯作者:
侯北平
作者简介:
周乐(1987—),男,博士,副教授,基金资助:
CLC Number:
Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing[J]. CIESC Journal, 2022, 73(7): 3156-3165.
周乐, 沈程凯, 吴超, 侯北平, 宋执环. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165.
Add to citation manager EndNote|Ris|BibTeX
Models | RMSE | |
---|---|---|
PPCR | 0.8944 | 2.0062 |
SSAE | 0.9187 | 1.7601 |
SNDS | 0.9233 | 1.7098 |
DFFEN | ||
T=2 | 0.9202 | 1.7472 |
T=3 | 0.9343 | 1.5838 |
T=4 | 0.9364 | 1.5573 |
T=5 | 0.9282 | 1.6561 |
Table 1 Prediction results for different models using numerical case
Models | RMSE | |
---|---|---|
PPCR | 0.8944 | 2.0062 |
SSAE | 0.9187 | 1.7601 |
SNDS | 0.9233 | 1.7098 |
DFFEN | ||
T=2 | 0.9202 | 1.7472 |
T=3 | 0.9343 | 1.5838 |
T=4 | 0.9364 | 1.5573 |
T=5 | 0.9282 | 1.6561 |
编号 | 变量描述 |
---|---|
FR03001 | 流入03B001的燃气流量 |
FR03002 | 流入03B001的外置燃气流量 |
PC03002 | 03E005出口处燃气外置燃料压力 |
PC03007 | 03B001炉膛出口烟气压力 |
TI03001 | 03E005出口处的燃料放气温度 |
TI03009 | 03B002E06出口燃气的温度 |
TR03012 | 03B001入口处的加工气体温度 |
TI03013 | 03B001左上角炉膛烟气温度 |
TI03014 | 03B001右上角炉膛烟气温度 |
TR03015 | 03B001炉顶混炉烟气温度 |
TR03016 | 03B001左出口的转化气体温度 |
TR03017 | 03B001右出口的转化气体温度 |
TR03020 | 03B001出口转化气体的温度 |
AR03001 | 炉顶氧浓度 |
Table 2 The description of the variables in primary reformer
编号 | 变量描述 |
---|---|
FR03001 | 流入03B001的燃气流量 |
FR03002 | 流入03B001的外置燃气流量 |
PC03002 | 03E005出口处燃气外置燃料压力 |
PC03007 | 03B001炉膛出口烟气压力 |
TI03001 | 03E005出口处的燃料放气温度 |
TI03009 | 03B002E06出口燃气的温度 |
TR03012 | 03B001入口处的加工气体温度 |
TI03013 | 03B001左上角炉膛烟气温度 |
TI03014 | 03B001右上角炉膛烟气温度 |
TR03015 | 03B001炉顶混炉烟气温度 |
TR03016 | 03B001左出口的转化气体温度 |
TR03017 | 03B001右出口的转化气体温度 |
TR03020 | 03B001出口转化气体的温度 |
AR03001 | 炉顶氧浓度 |
Models | RMSE | |
---|---|---|
PPCR | -0.3291 | 1.1737 |
SSAE | 0.5389 | 0.6913 |
SNDS | 0.1121 | 0.8833 |
DFFEN | 0.6946 | 0.5181 |
Table 3 Prediction results for different models in the synthetic ammonia process
Models | RMSE | |
---|---|---|
PPCR | -0.3291 | 1.1737 |
SSAE | 0.5389 | 0.6913 |
SNDS | 0.1121 | 0.8833 |
DFFEN | 0.6946 | 0.5181 |
1 | 陈忠圣, 朱梅玉, 贺彦林, 等. 基于分位数回归CGAN的虚拟样本生成方法及其过程建模应用[J]. 化工学报, 2021, 72(3): 1529-1538. |
Chen Z S, Zhu M Y, He Y L, et al. Quantile regression CGAN based virtual samples generation and its applications to process modeling[J]. CIESC Journal, 2021, 72(3): 1529-1538. | |
2 | 李海波, 柴天佑, 岳恒. 浮选工艺指标KPCA-ELM软测量模型及应用[J]. 化工学报, 2012, 63(9): 2892-2898. |
Li H B, Chai T Y, Yue H. Soft sensor of technical indices based on KPCA-ELM and application for flotation process[J]. CIESC Journal, 2012, 63(9): 2892-2898. | |
3 | Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry[J]. Computers & Chemical Engineering, 2009, 33(4): 795-814. |
4 | Yuan X F, Huang B, Wang Y L, et al. Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE[J]. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3235-3243. |
5 | Ge Z Q, Song Z H, Ding S X, et al. Data mining and analytics in the process industry: the role of machine learning[J]. IEEE Access, 2017, 5: 20590-20616. |
6 | Massy W F. Principal components regression in exploratory statistical research[J]. Journal of the American Statistical Association, 1965, 60(309): 234-256. |
7 | Ma M, Khatibisepehr S, Huang B. A Bayesian framework for real-time identification of locally weighted partial least squares[J]. AIChE Journal, 2015, 61(2): 518-529. |
8 | Fortuna L, Giannone P, Graziani S, et al. Virtual instruments based on stacked neural networks to improve product quality monitoring in a refinery[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(1): 95-101. |
9 | Kaneko H, Funatsu K. Application of online support vector regression for soft sensors[J]. AIChE Journal, 2014, 60(2): 600-612. |
10 | Ku W F, Storer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 179-196. |
11 | Dong Y N, Qin S J. Regression on dynamic PLS structures for supervised learning of dynamic data[J]. Journal of Process Control, 2018, 68: 64-72. |
12 | Chen J, Liu K C. On-line batch process monitoring using dynamic PCA and dynamic PLS models[J]. Chemical Engineering Science, 2002, 57(1): 63-75. |
13 | Ge Z Q, Chen X R. Dynamic probabilistic latent variable model for process data modeling and regression application[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1): 323-331. |
14 | Everett B. An Introduction to Latent Variable Models[M]. Berlin:Springer Science & Business Media, 2013. |
15 | Dong Y N, Qin S J. Dynamic latent variable analytics for process operations and control[J]. Computers & Chemical Engineering, 2018, 114: 69-80. |
16 | Zhou L, Li G, Song Z H, et al. Autoregressive dynamic latent variable models for process monitoring[J]. IEEE Transactions on Control Systems Technology, 2017, 25(1): 366-373. |
17 | Zhou L, Zheng J Q, Ge Z Q, et al. Multimode process monitoring based on switching autoregressive dynamic latent variable model[J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 8184-8194. |
18 | Schölkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319. |
19 | Rosipal R, Trejo L J. Kernel partial least squares regression in reproducing kernel Hilbert space[J]. Journal of Machine Learning Research, 2001, 2: 97-123. |
20 | Kingma D P, Welling M. Auto-encoding variational Bayes[J/OL]. [2022-03-07].. |
21 | McCoy J T, Kroon S, Auret L. Variational autoencoders for missing data imputation with application to a simulated milling circuit[J]. IFAC-PapersOnLine, 2018, 51(21): 141-146. |
22 | Xie R M, Jan N M, Hao K R, et al. Supervised variational autoencoders for soft sensor modeling with missing data[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2820-2828. |
23 | Odiowei P P, Cao Y. Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations[J]. IEEE Transactions on Industrial Informatics, 2010, 6(1): 36-45. |
24 | Yuan X F, Li L, Wang Y L. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3168-3176. |
25 | Yuan X F, Li L, Shardt Y A W, et al. Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4404-4414. |
26 | Yao L, Jiang X Y, Huang G P, et al. Virtual sensing f-CaO content of cement clinker based on incremental deep dynamic features extracting and transferring model[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-10. |
27 | Huang Y, Chen C H, Huang C J. Motor fault detection and feature extraction using RNN-based variational autoencoder[J]. IEEE Access, 2019, 7: 139086-139096. |
28 | Geng Z Q, Chen Z W, Meng Q C, et al. Novel transformer based on gated convolutional neural network for dynamic soft sensor modeling of industrial processes[J]. IEEE Transactions on Industrial Informatics, 2022, 18(3): 1521-1529. |
29 | Lee Y S, Ooi S K, Tanny D, et al. Developing soft-sensor models using latent dynamic variational autoencoders[J]. IFAC-PapersOnLine, 2021, 54(3): 61-66. |
30 | Yao L, Ge Z Q. Dynamic features incorporated locally weighted deep learning model for soft sensor development[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11. |
31 | Shen B B, Ge Z Q. Supervised nonlinear dynamic system for soft sensor application aided by variational auto-encoder[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 6132-6142. |
32 | Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [C]//Advances in Neural Information Processing Systems 30 (NIPS 2017. LongBeach, CA, USA, 2017: 5998-6008. |
33 | Zhang M X, Yang Y, Ji Y L, et al. Recurrent attention network using spatial-temporal relations for action recognition[J]. Signal Processing, 2018, 145: 137-145. |
[1] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[2] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[3] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[4] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[5] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[6] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[7] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[8] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[9] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[10] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[11] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[12] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[13] | Xin LI, Shaojuan ZENG, Kuilin PENG, Lei YUAN, Xiangping ZHANG. Research progress and tendency of CO2 electrocatalytic reduction to syngas [J]. CIESC Journal, 2023, 74(1): 313-329. |
[14] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
[15] | Yuelin WANG, Wei CHAO, Xiaocheng LAN, Zhipeng MO, Shuhuan TONG, Tiefeng WANG. Review of ethanol production via biological syngas fermentation [J]. CIESC Journal, 2022, 73(8): 3448-3460. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||