1 |
García-Aparicio M P, Ballesteros I, González A, et al. Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis[J]. Applied Biochemistry and Biotechnology, 2006, 129(1/2/3): 278-288.
|
2 |
许敬亮, 常春, 韩秀丽, 等. 合成气乙醇发酵技术研究进展[J]. 化工进展, 2019, 38(1): 586-597.
|
|
Xu J L, Chang C, Han X L, et al. Research progress on bioethanol production technologies through syngas fermentation[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 586-597.
|
3 |
Phillips J R, Clausen E C, Gaddy J L. Synthesis gas as substrate for the biological production of fuels and chemicals[J]. Applied Biochemistry and Biotechnology, 1994, 45(1): 145-157.
|
4 |
Munasinghe P C, Khanal S K. Biomass-derived syngas fermentation into biofuels: opportunities and challenges[J]. Bioresource Technology, 2010, 101(13): 5013-5022.
|
5 |
牟晨璐, 丁涛, 周郑洋, 等. 面向碳中和的工业尾气电厂技术综述及其典型案例经济性分析[J]. 电力自动化设备, 2021, 41(9): 74-84.
|
|
Mu C L, Ding T, Zhou Z Y, et al. Technology review on industrial off-gas power plants for carbon neutral and economic analysis of typical cases[J]. Electric Power Automation Equipment, 2021, 41(9): 74-84.
|
6 |
北京首钢朗泽科技股份有限公司. 工业尾气生物发酵制燃料乙醇项目介绍[C]//2019钢铁、焦化行业煤气安全管理与高效利用技术交流会会议文集. 唐山, 河北: 河北省金属学会, 2019: 125-131.
|
|
Beijing Shougang Lanzatech New Energy Technology Co., Ltd. The introduction of fuel ethanol production from industrial exhaust gas by biological fermentation[C]//2019 Steel, Coking Industry Gas Safety Management and Efficient Utilization technology Exchange Conference Proceedings. Tangshan, Hebei: Hebei Metal Society, 2019: 125-131.
|
7 |
Klasson K T, Elmore B B, Vega J L, et al. Biological production of liquid and gaseous fuels from synthesis gas[J]. Applied Biochemistry and Biotechnology, 1990, 24 (1): 857-873.
|
8 |
Allen T D, Caldwell M E, Lawson P A, et al. Alkalibaculum bacchi gen. nov., sp. nov., a CO-oxidizing, ethanol-producing acetogen isolated from livestock-impacted soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(10): 2483-2489.
|
9 |
Liu K, Atiyeh H K, Tanner R S, et al. Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchi [J]. Bioresource Technology, 2012, 104: 336-341.
|
10 |
Lynd L, Kerby R, Zeikus J G. Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum [J]. Journal of Bacteriology, 1982, 149(1): 255-263.
|
11 |
Zeikus J G, Lynd L H, Thompson T E, et al. Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the Marburg strain[J]. Current Microbiology, 1980, 3(6): 381-386.
|
12 |
Worden R M, Grethlein A J, Jain M K, et al. Production of butanol and ethanol from synthesis gas via fermentation[J]. Fuel, 1991, 70(5): 615-619.
|
13 |
Sim J H, Kamaruddin A H, Long W S, et al. Clostridium aceticum—a potential organism in catalyzing carbon monoxide to acetic acid: application of response surface methodology[J]. Enzyme and Microbial Technology, 2007, 40(5): 1234-1243.
|
14 |
Abrini J, Naveau H, Nyns E J. Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide[J]. Archives of Microbiology, 1994, 161(4): 345-351.
|
15 |
Guo Y, Xu J L, Zhang Y, et al. Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source[J]. Bioresource Technology, 2010, 101(22): 8784-8789.
|
16 |
Cotter J L, Chinn M S, Grunden A M. Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas[J]. Enzyme and Microbial Technology, 2009, 44(5): 281-288.
|
17 |
Liou J S C, Balkwill D L, Drake G R, et al. Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(5): 2085-2091.
|
18 |
He Y X, Lens P N L, Veiga M C, et al. Enhanced ethanol production from carbon monoxide by enriched clostridium bacteria[J]. Frontiers in Microbiology, 2021, 12: 754713.
|
19 |
Tanner R S, Miller L M, Yang D. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I[J]. International Journal of Systematic Bacteriology, 1993, 43(2): 232-236.
|
20 |
Huhnke R L, Lewis R S, Tanner R S. Isolation and characterization of novel clostridial species: US7704723[P]. 2010-04-27.
|
21 |
Panneerselvam A, Wilkins M R, DeLorme M J M, et al. Effects of various reducing agents on syngas fermentation by “Clostridium ragsdalei”[J]. Biological Engineering Transactions, 2010, 2(3): 135-144.
|
22 |
Istiqomah N A, Kresnowati M P, Setiadi T. Syngas fermentation for production of ethanol[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1143(1): 012014.
|
23 |
Rajagopalan S, Datar R P, Lewis R S. Formation of ethanol from carbon monoxide via a new microbial catalyst[J]. Biomass and Bioenergy, 2002, 23(6): 487-493.
|
24 |
Sakai S, Nakashimada Y, Yoshimoto H, et al. Ethanol production from H2 and CO2 by a newly isolated thermophilic bacterium, Moorella sp. HUC22-1[J]. Biotechnology Letters, 2004, 26(20): 1607-1612.
|
25 |
Savage M D, Wu Z G, Daniel S L, et al. Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum [J]. Applied and Environmental Microbiology, 1987, 53(8): 1902-1906.
|
26 |
王陆洋. 生物质合成气发酵制取乙醇技术探索[D]. 杭州: 浙江大学, 2021.
|
|
Wang L Y. Technology exploration of ethanol production from biomass syngas fermentation[D]. Hangzhou: Zhejiang University, 2021.
|
27 |
Wilkins M R, Atiyeh H K. Microbial production of ethanol from carbon monoxide[J]. Current Opinion in Biotechnology, 2011, 22(3): 326-330.
|
28 |
Köpke M, Held C, Hujer S, et al. Clostridium ljungdahlii represents a microbial production platform based on syngas[J]. PNAS, 2010, 107(29): 13087-13092.
|
29 |
Ragsdale S W, Pierce E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation[J]. Biochimica et Biophysica Acta (BBA)- Proteins and Proteomics, 2008, 1784(12): 1873-1898.
|
30 |
Zhu X F, Tan X S. Metalloproteins/metalloenzymes for the synthesis of acetyl-CoA in the Wood-Ljungdahl pathway[J]. Science in China Series B: Chemistry, 2009, 52(12): 2071-2082.
|
31 |
Latif H, Zeidan A A, Nielsen A T, et al. Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms[J]. Current Opinion in Biotechnology, 2014, 27: 79-87.
|
32 |
Henstra A M, Sipma J, Rinzema A, et al. Microbiology of synthesis gas fermentation for biofuel production[J]. Current Opinion in Biotechnology, 2007, 18(3): 200-206.
|
33 |
Ragsdale S W. Enzymology of the acetyl-CoA pathway of CO2 fixation[J]. Critical Reviews in Biochemistry and Molecular Biology, 1991, 26(3/4): 261-300.
|
34 |
Stelmachowski M, Nowicki L. Fuel from the synthesis gas—the role of process engineering[J]. Applied Energy, 2003, 74(1/2): 85-93.
|
35 |
陈俊武, 李春年, 陈香生. 石油替代综论[M]. 北京: 中国石化出版社, 2009.
|
|
Chen J W, Li C N, Chen X S. An Overview of Petroleum Substitution[M]. Beijing: China Petrochemical Press, 2009.
|
36 |
张海峰, 张敏. 不同煤气化技术合成气发酵法制乙醇的可行性探讨[J]. 现代化工, 2020, 40(S1): 279-283.
|
|
Zhang H F, Zhang M. Discussion on feasibility of fermentation to produce ethanol by syngas with different coal gasification technologies[J]. Modern Chemical Industry, 2020, 40(S1): 279-283.
|
37 |
李琼玖, 叶传湘. 天然气转化制合成气工艺优化[J]. 四川化工, 1996(S4): 56-59.
|
|
Li Q J, Ye C X. Optimization of natural gas conversion to syngas process[J]. Sichuan Chemical Industry, 1996(S4): 56-59.
|
38 |
黎先发, 张颖, 罗学刚. 利用木质纤维素生产燃料酒精研究进展[J]. 现代化工, 2009, 29(1): 20-26.
|
|
Li X F, Zhang Y, Luo X G. Advances in production of fuel alcohol by lignocellulosic biomass[J]. Modern Chemical Industry, 2009, 29(1): 20-26.
|
39 |
孟丽莉, 丛凤英. 利用电石尾气制取甲醇[J]. 山西化工, 2021, 41(4): 55-57.
|
|
Meng L L, Cong F Y. Preparation of methanol from calcium carbide tail gas[J]. Shanxi Chemical Industry, 2021, 41(4): 55-57
|
40 |
黄敏, 曾义红, 唐黎华, 等. 含CO副产气资源化利用进展[J]. 上海化工, 2011, 36(5): 30-32.
|
|
Huang M, Zeng Y H, Tang L H, et al. Research progress in resource utilization of accessory gas with carbon monoxide[J]. Shanghai Chemical Industry, 2011, 36(5): 30-32.
|
41 |
周波, 邱海芳. 醋酸尾气回收制备高纯度一氧化碳技术研究[J]. 煤炭与化工, 2021, 44(11): 125-127, 133.
|
|
Zhou B, Qiu H F. Research on the technology of preparation high-purity carbon monoxide by recovering acetic acid tail gas[J]. Coal and Chemical Industry, 2021, 44(11): 125-127, 133.
|
42 |
王一坤, 雷小苗, 邓磊, 等. 可燃废气利用技术研究进展(Ⅰ): 高炉煤气、转炉煤气和焦炉煤气[J]. 热力发电, 2014, 43(7): 1-9, 14.
|
|
Wang Y K, Lei X M, Deng L, et al. A review on utilization of combustible waste gas (Ⅰ): Blast furnace gas, converter gas and coke oven gas[J]. Thermal Power Generation, 2014, 43(7): 1-9, 14.
|
43 |
苏岱峰. 微观组分变化对转炉煤气爆炸下限的影响研究[J]. 山西冶金, 2021, 44(5): 89-90, 93.
|
|
Su D F. Study on the influence of micro component change on the lower explosion limit of converter gas[J]. Shanxi Metallurgy, 2021, 44(5): 89-90, 93.
|
44 |
陈玉保, 宁平, 孙海燕, 等. 合成氨液氮洗驰放气变压吸附提纯CO实验研究[C]//中国环境科学学会2009年学术年会论文集第二卷. 武汉, 湖北: 中国环境科学学会, 2009:1059-1065.
|
|
Chen Y B, Ning P, Sun H Y, et al. Experimental study on purification of CO from synthetic ammonia with liquid nitrogen by washing and releasing gas pressure transformation adsorption[C]//Chinese Society for Environmental Science Annual Conference Proceedings Ⅱ. Wuhan, Hubei: Chinese Society of Environmental Sciences, 2009:1059-1065.
|
45 |
Orgill J J. Enhancement of mass transfer and electron usage for syngas fermentation[D]. Provo: Brigham Young University, 2014.
|
46 |
Heiskanen H, Virkajärvi I, Viikari L. The effect of syngas composition on the growth and product formation of Butyribacterium methylotrophicum [J]. Enzyme and Microbial Technology, 2007, 41(3): 362-367.
|
47 |
Skidmore B E, Baker R A, Banjade D R, et al. Syngas fermentation to biofuels: effects of hydrogen partial pressure on hydrogenase efficiency[J]. Biomass and Bioenergy, 2013, 55: 156-162.
|
48 |
Hurst K M, Lewis R S. Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation[J]. Biochemical Engineering Journal, 2010, 48(2): 159-165.
|
49 |
Ramachandriya K D, DeLorme M J, Wilkins M R. Heat shocking of Clostridium strain P11 to promote sporulation and ethanol production[J]. Biological Engineering, 2010, 2(2): 115-131.
|
50 |
Chen J, Gomez J A, Höffner K, et al. Metabolic modeling of synthesis gas fermentation in bubble column reactors[J]. Biotechnology for Biofuels, 2015, 8: 89.
|
51 |
Esquivel-Elizondo S, Delgado A G, Rittmann B E, et al. The effects of CO2 and H2 on CO metabolism by pure and mixed microbial cultures[J]. Biotechnology for Biofuels, 2017, 10: 220.
|
52 |
Bridgwater A V. Catalysis in thermal biomass conversion[J]. Applied Catalysis A: General, 1994, 116(1/2): 5-47.
|
53 |
Haryanto A, Fernando S D, Pordesimo L O, et al. Upgrading of syngas derived from biomass gasification: a thermodynamic analysis[J]. Biomass and Bioenergy, 2009, 33(5): 882-889.
|
54 |
Ramachandriya K D. Effect of biomass generated producer gas, methane and physical parameters on producer gas fermentations by Clostridium strain P11[D]. Stillwater: Oklahoma State University, 2009.
|
55 |
Ahmed A, Cateni B G, Huhnke R L, et al. Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T[J]. Biomass and Bioenergy, 2006, 30(7): 665-672.
|
56 |
Ahmed A, Lewis R S. Fermentation of biomass-generated synthesis gas: effects of nitric oxide[J]. Biotechnology and Bioengineering, 2007, 97(5): 1080-1086.
|
57 |
Klasson K T, Ackerson M D, Clausen E C, et al. Biological conversion of coal and coal-derived synthesis gas[J]. Fuel, 1993, 72(12): 1673-1678.
|
58 |
Maddipati P, Atiyeh H K, Bellmer D D, et al. Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract[J]. Bioresource Technology, 2011, 102(11): 6494-6501.
|
59 |
Fernández-Naveira Á, Veiga M C, Kennes C. Effect of pH control on the anaerobic H-B-E fermentation of syngas in bioreactors[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(6): 1178-1185.
|
60 |
Richter H, Molitor B, Wei H, et al. Ethanol production in syngas-fermenting Clostridium ljungdahlii is controlled by thermodynamics rather than by enzyme expression[J]. Energy & Environmental Science, 2016, 9(7): 2392-2399.
|
61 |
Abubackar H N, Veiga M C, Kennes C. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid[J]. Bioresource Technology, 2015, 186: 122-127.
|
62 |
Abubackar H N, Bengelsdorf F R, Dürre P, et al. Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia[J]. Applied Energy, 2016, 169: 210-217.
|
63 |
Fernández-Naveira Á, Abubackar H N, Veiga M C, et al. Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans [J]. Applied Microbiology and Biotechnology, 2016, 100(7): 3361-3370.
|
64 |
Martin M E, Richter H, Saha S, et al. Traits of selected Clostridium strains for syngas fermentation to ethanol[J]. Biotechnology and Bioengineering, 2016, 113(3): 531-539.
|
65 |
Atiyeh H K, Phillips J R, Huhnke R L. System and method for feedback control of gas supply for ethanol production via syngas fermentation using pH as a key control indicator: US10017789[P]. 2018-07-10.
|
66 |
Kundiyana D K, Wilkins M R, Maddipati P, et al. Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by “Clostridium ragsdalei”[J]. Bioresource Technology, 2011, 102(10): 5794-5799.
|
67 |
Shen S H, Wang G, Zhang M, et al. Effect of temperature and surfactant on biomass growth and higher-alcohol production during syngas fermentation by Clostridium carboxidivorans P7[J]. Bioresources and Bioprocessing, 2020, 7: 56.
|
68 |
Ramió-Pujol S, Ganigué R, Bañeras L, et al. Incubation at 25 ℃ prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7[J]. Bioresource Technology, 2015, 192: 296-303.
|
69 |
Mohammadi M. Effect of organic substrate on promoting solventogenesis in ethanologenic acetogene Clostridium ljungdahlii ATCC 55383[J]. International Journal of Engineering, 2014, 27(2): 185-194.
|
70 |
Phillips J, Huhnke R, Atiyeh H. Syngas fermentation: a microbial conversion process of gaseous substrates to various products[J]. Fermentation, 2017, 3(2): 28.
|
71 |
Klasson K T, Ackerson C M D, Clausen E C, et al. Biological conversion of synthesis gas into fuels[J]. International Journal of Hydrogen Energy, 1992, 17(4): 281-288.
|
72 |
Andrews J F. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates[J]. Biotechnology and Bioengineering, 1968, 10(6): 707-723.
|
73 |
Vega J L, Clausen E C, Gaddy J L. Design of bioreactors for coal synthesis gas fermentations[J]. Resources, Conservation and Recycling, 1990, 3(2/3): 149-160.
|
74 |
Klasson K T, Ackerson M D, Clausen E C, et al. Bioreactors for synthesis gas fermentations[J]. Resources, Conservation and Recycling, 1991, 5(2/3): 145-165.
|
75 |
Kennes D, Abubackar H N, Diaz M, et al. Bioethanol production from biomass: carbohydrate vs syngas fermentation[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(2): 304-317.
|
76 |
吴冠勋, 吴玉珊, 韩一凡, 等. 产乙酸菌合成气发酵的研究进展[J]. 微生物前沿, 2017, 6(1): 9.
|
|
Wu G X, Wu Y S, Han Y F, et al. Advances in syngas fermentation of acetic acid producing bacteria[J]. Frontiers of Microbiology, 2017, 6(1): 9.
|
77 |
Saxena J, Tanner R S. Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei [J]. Journal of Industrial Microbiology and Biotechnology, 2011, 38(4): 513-521.
|
78 |
Kundiyana D K, Huhnke R L, Maddipati P, et al. Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermentation medium during synthesis gas fermentation[J]. Bioresource Technology, 2010, 101(24): 9673-9680.
|
79 |
Liu K, Atiyeh H K, Stevenson B S, et al. Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol[J]. Bioresource Technology, 2014, 151: 69-77.
|
80 |
Saxena J, Tanner R S. Optimization of a corn steep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei [J]. World Journal of Microbiology & Biotechnology, 2012, 28(4): 1553-1561.
|
81 |
Richter H, Martin M, Angenent L. A two-stage continuous fermentation system for conversion of syngas into ethanol[J]. Energies, 2013, 6(8): 3987-4000.
|
82 |
Abubackar H N, Veiga M C, Kennes C. Production of acids and alcohols from syngas in a two-stage continuous fermentation process[J]. Bioresource Technology, 2018, 253: 227-234.
|
83 |
Bredwell M D, Worden R M. Mass-transfer properties of microbubbles(1): Experimental studies[J]. Biotechnology Progress, 1998, 14(1): 31-38.
|
84 |
Bredwell M D, Srivastava P, Worden R M. Reactor design issues for synthesis-gas fermentations[J]. Biotechnology Progress, 1999, 15(5): 834-844.
|
85 |
Liu K, Phillips J R, Sun X, et al. Investigation and modeling of gas-liquid mass transfer in a sparged and non-sparged continuous stirred tank reactor with potential application in syngas fermentation[J]. Fermentation, 2019, 5(3): 75.
|
86 |
Munasinghe P C, Khanal S K. Evaluation of hydrogen and carbon monoxide mass transfer and a correlation between the myoglobin-protein bioassay and gas chromatography method for carbon monoxide determination[J]. RSC Advances, 2014, 4(71): 37575-37581.
|
87 |
Devarapalli M, Lewis R, Atiyeh H. Continuous ethanol production from synthesis gas by Clostridium ragsdalei in a trickle-bed reactor[J]. Fermentation, 2017, 3(2): 23.
|
88 |
Shen Y W, Brown R, Wen Z Y. Enhancing mass transfer and ethanol production in syngas fermentation of Clostridium carboxidivorans P7 through a monolithic biofilm reactor[J]. Applied Energy, 2014, 136: 68-76.
|
89 |
Orgill J J, Atiyeh H K, Devarapalli M, et al. A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors[J]. Bioresource Technology, 2013, 133: 340-346.
|
90 |
Shen Y W, Brown R C, Wen Z Y. Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production[J]. Applied Energy, 2017, 187: 585-594.
|
91 |
Bouaifi M, Hebrard G, Bastoul D, et al. A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas-liquid reactors and bubble columns[J]. Chemical Engineering and Processing: Process Intensification, 2001, 40(2): 97-111.
|
92 |
Abubackar H N, Veiga M C, Kennes C. Syngas fermentation for bioethanol and bioproducts[M]//Sustainable Resource Recovery and Zero Waste Approaches. Amsterdam: Elsevier B.V., 2019: 207-221.
|
93 |
Cowger J P, Klasson K T, Ackerson M D, et al. Mass-transfer and kinetic aspects in continuous bioreactors using Rhodospirillum rubrum [J]. Applied Biochemistry and Biotechnology, 1992, 34(1): 613-624.
|
94 |
Devarapalli M, Atiyeh H K, Phillips J R, et al. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei [J]. Bioresource Technology, 2016, 209: 56-65.
|
95 |
Riggs S S, Heindel T J. Measuring carbon monoxide gas-liquid mass transfer in a stirred tank reactor for syngas fermentation[J]. Biotechnology Progress, 2006, 22(3): 903-906.
|
96 |
Younesi H, Najafpour G, Ku Ismail K S, et al. Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum rubrum [J]. Bioresource Technology, 2008, 99(7): 2612-2619.
|
97 |
Chang I S, Kim B H, Lovitt R W, et al. Effect of CO partial pressure on cell-recycled continuous CO fermentation by Eubacterium limosum KIST612[J]. Process Biochemistry, 2001, 37(4): 411-421.
|
98 |
Shen Y W, Brown R, Wen Z Y. Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: evaluating the mass transfer coefficient and ethanol production performance[J]. Biochemical Engineering Journal, 2014, 85: 21-29.
|
99 |
Munasinghe P C, Khanal S K. Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer and analytical modeling using a composite hollow fiber (CHF) membrane bioreactor[J]. Bioresource Technology, 2012, 122: 130-136.
|
100 |
Lee P H, Ni S Q, Chang S Y, et al. Enhancement of carbon monoxide mass transfer using an innovative external hollow fiber membrane (HFM) diffuser for syngas fermentation: experimental studies and model development[J]. Chemical Engineering Journal, 2012, 184: 268-277.
|
101 |
Mohammadi M, Younesi H, Najafpour G, et al. Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor[J]. Journal of Chemical Technology & Biotechnology, 2012, 87(6): 837-843.
|
102 |
Kundiyana D K, Huhnke R L, Wilkins M R. Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations[J]. Journal of Bioscience and Bioengineering, 2010, 109(5): 492-498.
|
103 |
Phillips J R, Klasson K T, Clausen E C, et al. Biological production of ethanol from coal synthesis gas[J]. Applied Biochemistry and Biotechnology, 1993, 39(1): 559-571.
|
104 |
Ruthiya K. Mass transfer and hydrodynamics in catalytic slurry reactors[D]. Eindhoven, The Netherlands: Eindhoven University of Technology, 2005.
|
105 |
Kim Y K, Lee H. Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation[J]. Bioresource Technology, 2016, 204: 139-144.
|
106 |
Zhu H Y, Shanks B H, Heindel T J. Enhancing CO-water mass transfer by functionalized MCM41 nanoparticles[J]. Industrial & Engineering Chemistry Research, 2008, 47(20): 7881-7887.
|
107 |
Zhu H Y, Shanks B H, Choi D W, et al. Effect of functionalized MCM41 nanoparticles on syngas fermentation[J]. Biomass and Bioenergy, 2010, 34(11): 1624-1627.
|
108 |
Atiyeh H K, Lewis R S, Phillips J R, et al. Method improving producer gas fermentation: US10053711[P]. 2018-08-21.
|
109 |
Zhu H Y, Shanks B H, Heindel T J. Effect of electrolytes on CO–water mass transfer[J]. Industrial & Engineering Chemistry Research, 2009, 48(6): 3206-3210.
|
110 |
Gunes B. A critical review on biofilm-based reactor systems for enhanced syngas fermentation processes[J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110950.
|
111 |
Stoll I K, Boukis N, Sauer J. Syngas fermentation at elevated pressure-experimental results[C]//27th European Biomass Conference and Exhibition. Lisbon, Portugal: European Commission, Joint Research Centre, 2019: 1255-1261.
|
112 |
Takors R, Kopf M, Mampel J, et al. Using gas mixtures of CO, CO2 and H2 as microbial substrates: the do's and don'ts of successful technology transfer from laboratory to production scale[J]. Microbial Biotechnology, 2018, 11(4): 606-625.
|
113 |
Köpke M, Mihalcea C, Bromley J C, et al. Fermentative production of ethanol from carbon monoxide[J]. Current Opinion in Biotechnology, 2011, 22(3): 320-325.
|
114 |
Daniell J, Köpke M, Simpson S. Commercial biomass syngas fermentation[J]. Energies, 2012, 5(12): 5372-5417.
|