CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 2962-2970.DOI: 10.11949/0438-1157.20220178
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Meiyue YAN1(),Jian DENG2,Liangming PAN1(),Zaiyong MA1,Xiang LI1,Jiewen DENG1,Qingche HE1
Received:
2022-02-07
Revised:
2022-04-18
Online:
2022-08-01
Published:
2022-07-05
Contact:
Liangming PAN
闫美月1(),邓坚2,潘良明1(),马在勇1,李想1,邓杰文1,何清澈1
通讯作者:
潘良明
作者简介:
闫美月(1993—),女,博士研究生, 基金资助:
CLC Number:
Meiyue YAN, Jian DENG, Liangming PAN, Zaiyong MA, Xiang LI, Jiewen DENG, Qingche HE. Mechanism model of critical heat flux in narrow rectangular channel based on flow oscillations[J]. CIESC Journal, 2022, 73(7): 2962-2970.
闫美月, 邓坚, 潘良明, 马在勇, 李想, 邓杰文, 何清澈. 基于流量振荡的窄矩形通道内临界热通量机理模型[J]. 化工学报, 2022, 73(7): 2962-2970.
Add to citation manager EndNote|Ris|BibTeX
参数 | 工况 |
---|---|
实验压力p/MPa | 1~4 |
窄缝宽度ε/mm | 1~5 |
加热长度 L/mm | 600 |
质量流速G/(kg/(m2·s)) | 350~2000 |
入口过冷度ΔTin,sub/K | 60~120 |
加热方式 | 单面加热 |
加热材料 | 不锈钢 |
流向 | 向上流动 |
工质 | 去离子水 |
Table 1 Range of experimental parameters
参数 | 工况 |
---|---|
实验压力p/MPa | 1~4 |
窄缝宽度ε/mm | 1~5 |
加热长度 L/mm | 600 |
质量流速G/(kg/(m2·s)) | 350~2000 |
入口过冷度ΔTin,sub/K | 60~120 |
加热方式 | 单面加热 |
加热材料 | 不锈钢 |
流向 | 向上流动 |
工质 | 去离子水 |
现有模型 | 具体项目 |
---|---|
Helmholtz不稳定性[ | 研究对象:下层流体密度高于上层流体密度,两流体交界面均与交界面平行,但速度不同,当两者相对速度超过临界值时,发生Helmholtz不稳定性 |
CHF机理:加热壁面上小气泡聚合形成大气泡,大气泡底部的微液层因蒸发而完全耗尽时发生沸腾危机,大气泡长度取决于Helmholtz不稳定性 | |
Taylor不稳定性[ | 研究对象:上层流体密度高于下层流体密度,讨论两流体受到垂直交界面的扰动时引起的不稳定现象 |
CHF机理:在池式沸腾中,临界热通量为以最危险波长为直径的气泡的蒸发热通量 |
Table2 Instability models
现有模型 | 具体项目 |
---|---|
Helmholtz不稳定性[ | 研究对象:下层流体密度高于上层流体密度,两流体交界面均与交界面平行,但速度不同,当两者相对速度超过临界值时,发生Helmholtz不稳定性 |
CHF机理:加热壁面上小气泡聚合形成大气泡,大气泡底部的微液层因蒸发而完全耗尽时发生沸腾危机,大气泡长度取决于Helmholtz不稳定性 | |
Taylor不稳定性[ | 研究对象:上层流体密度高于下层流体密度,讨论两流体受到垂直交界面的扰动时引起的不稳定现象 |
CHF机理:在池式沸腾中,临界热通量为以最危险波长为直径的气泡的蒸发热通量 |
Ref. | Correlation | Ranges |
---|---|---|
[ | — | |
[ | G: 124—886 kg/(m2·s) ΔTin,sub: 6.6—52.5 K | |
[ | p: 0.1—0.5 MPa G: 400—1600 kg/(m2·s) ΔTin,sub: 20—60 K |
Table 3 Correlations of nucleate site density
Ref. | Correlation | Ranges |
---|---|---|
[ | — | |
[ | G: 124—886 kg/(m2·s) ΔTin,sub: 6.6—52.5 K | |
[ | p: 0.1—0.5 MPa G: 400—1600 kg/(m2·s) ΔTin,sub: 20—60 K |
1 | 潘良明. 核反应堆热工水力学基础[M]. 重庆: 重庆大学出版社, 2020. |
Pan L M. Thermal Hydraulic Fundamentals of Nuclear Reactors[M]. Chongqing: Chongqing University Press, 2020. | |
2 | Yan M Y, Ma Z Y, Pan L M, et al. An evaluation of critical heat flux prediction methods for the upward flow in a vertical narrow rectangular channel[J]. Progress in Nuclear Energy, 2021, 140: 103901. |
3 | Kim H, Moon J, Hong D J, et al. Prediction of critical heat flux for narrow rectangular channels in a steady state condition using machine learning[J]. Nuclear Engineering and Technology, 2021, 53(6): 1796-1809. |
4 | Boure J A, Bergles A E, Tong L S. Review of two-phase flow instability[J]. Nuclear Engineering and Design, 1973, 25(2): 165-192. |
5 | Mishima K, Nishihara H. The effect of flow direction and magnitude on CHF for low pressure water in thin rectangular channels[J]. Nuclear Engineering and Design, 1985, 86(2): 165-181. |
6 | Oudah S K. Experimental investigation of single and two-phase heat transfer performance in microchannels with surface modifications and multiple inlet [D]. South Carolina: University of South Carolina, 2021. |
7 | Qu W L, Mudawar I. Measurement and prediction of pressure drop in two-phase micro-channel heat sinks[J]. International Journal of Heat and Mass Transfer, 2003, 46(15): 2737-2753. |
8 | Lin Y Q, Gao P Z, Chen X B, et al. Experimental investigation on instability characteristics of loss of heat sink accident in a natural circulation system[J]. Annals of Nuclear Energy, 2021, 155: 108143. |
9 | Fan Y F, Hassan I. Effect of inlet restriction on flow boiling heat transfer in a horizontal microtube[J]. Journal of Heat Transfer, 2013, 135(2): 1-9. |
10 | Maulbetsch J S. A study of system-induced instabilities in forced-convection flows with subcooled boiling[D]. Cambridge: Massachusetts Institute of Technology, 1965. |
11 | Kaya A, Özdemir M R, Keskinöz M, et al. The effects of inlet restriction and tube size on boiling instabilities and detection of resulting premature critical heat flux in microtubes using data analysis[J]. Applied Thermal Engineering, 2014, 65(1/2): 575-587. |
12 | Haas C, Meyer L, Schulenberg T. Flow instability and critical heat flux for flow boiling of water in a vertical annulus at low pressure[C]//Proceedings of ASME/JSME 2011 8th Thermal Engineering Joint Conference. Honolulu, Hawaii, USA, 2011. |
13 | Stoddard R M, Blasick A M, Ghiaasiaan S M, et al. Onset of flow instability and critical heat flux in thin horizontal annuli[J]. Experimental Thermal and Fluid Science, 2002, 26(1): 1-14. |
14 | Lee J, Jo D, Chae H, et al. The characteristics of premature and stable critical heat flux for downward flow boiling at low pressure in a narrow rectangular channel[J]. Experimental Thermal and Fluid Science, 2015, 69: 86-98. |
15 | Zhao D W, Su G H, Liang Z H, et al. Experimental research on transient critical heat flux in vertical tube under oscillatory flow condition[J]. International Journal of Multiphase Flow, 2011, 37(9): 1235-1244. |
16 | Ghione A, Noel B, Vinai P, et al. Criteria for onset of flow instability in heated vertical narrow rectangular channels at low pressure: an assessment study[J]. International Journal of Heat and Mass Transfer, 2017, 105: 464-478. |
17 | 陈娟, 周涛, 齐实, 等. 矩形通道自然循环流动不稳定性实验研究[J]. 核动力工程, 2017, 38(2): 51-55. |
Chen J, Zhou T, Qi S, et al. Experimental study of natural circulation flow instability in rectangular channels[J]. Nuclear Power Engineering, 2017, 38(2): 51-55. | |
18 | Sudo Y, Miyata K, Ikawa H, et al. Experimental study of differences in DNB heat flux between upflow and downflow in vertical rectangular channel[J]. Journal of Nuclear Science and Technology, 1985, 22(8): 604-618. |
19 | 于德海. 受限流道内CHF发生过程中的流动行为分析[D]. 哈尔滨: 哈尔滨工程大学, 2020. |
Yu D H. Analysis of CHF flow behavior in confined flow channels[D]. Harbin: Harbin Engineering University, 2020. | |
20 | 何海沙. 矩形窄通道内PM-CHF特性实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2019. |
He H S. Experimental study on PM-CHF in a narrow rectangular channel[D]. Harbin: Harbin Engineering University, 2019. | |
21 | 盛程, 周涛, 张蕾, 等. 窄矩形通道自然循环流动停滞与临界热流密度研究[J]. 核科学与工程, 2013, 33(1): 65-75. |
Sheng C, Zhou T, Zhang L, et al. Study on natural circulation flow stagnation and critical heat flux in narrow rectangular channel[J]. Nuclear Science and Engineering, 2013, 33(1): 65-75. | |
22 | Zhou J C, Ye T Z, Zhang D L, et al. Experimental study on vertically upward steam-water two-phase flow patterns in narrow rectangular channel[J]. Nuclear Engineering and Technology, 2021, 53(1): 61-68. |
23 | Zhang K, Zhu Z M, Shang B J, et al. Experimental investigation on flow regimes and transitions of steam-water two-phase flow in narrow rectangular horizontal channels[J]. Progress in Nuclear Energy, 2021, 131: 103601. |
24 | Yan M Y, Ren T T, Chen K L, et al. Visualized experiment of bubble behaviors in a vertical narrow rectangular channel under natural circulation condition[J]. Frontiers in Energy Research, 2018, 6: 105. |
25 | Ishii M, Hibiki T. Thermos-fluid Dynamics of Two-phase Flow[M]. 2nd ed. Berlin: Springer, 2010: 48-52. |
26 | Haramura Y, Katto Y. A new hydrodynamic model of critical heat flux, applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids[J]. International Journal of Heat and Mass Transfer, 1983, 26(3): 389-399. |
27 | 刘阳. 水电解中磁流体对气泡行为及两相流动特性的影响[D]. 重庆:重庆大学, 2021. |
Liu Y. Influence of magnetic fluid on bubble behavior and two-phase flow characteristics in water electrolysis [D]. Chongqing: Chongqing University, 2021. | |
28 | Yan M Y, He Q C, Ma Z Y, et al. Experimental investigation and a mechanical model of critical heat flux in a narrow rectangular channel[J]. Experimental Thermal and Fluid Science, 2021, 128: 110432. |
29 | 李少丹. 海洋条件下局部气泡行为及沸腾换热特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2015. |
Li S D. Study of local bubble behavior and boiling heat transfer characteristics under ocean condition[D]. Harbin: Harbin Engineering University, 2015. | |
30 | Luitjens J, Wu Q, Greenwood S, et al. Mechanistic CHF modeling for natural circulation applications in SMR[J]. Nuclear Engineering and Design, 2016, 310: 604-611. |
31 | Del Valle V H, Kenning D B R. Subcooled flow boiling at high heat flux[J]. International Journal of Heat and Mass Transfer, 1985, 28(10): 1907-1920. |
32 | Li S D, Tan S C, Xu C, et al. An experimental study of bubble sliding characteristics in narrow channel[J]. International Journal of Heat and Mass Transfer, 2013, 57(1): 89-99. |
33 | 闫美月. 竖直窄矩形通道内壁面热流分配模型的实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2019. |
Yan M Y. Experimental study of wall heat flux partitioning model in vertical rectangular narrow channel[D]. Harbin: Harbin Engineering University, 2019. |
[1] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[2] | Keke SHAO, Mengjie SONG, Zhengyong JIANG, Xuan ZHANG, Long ZHANG, Runmiao GAO, Zekang ZHEN. Experimental study on the formation and distribution of trapped air bubbles in horizontal ice slice [J]. CIESC Journal, 2023, 74(S1): 161-164. |
[3] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[4] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[5] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[6] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[7] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[8] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[9] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[10] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
[11] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[12] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[13] | Qichao LIU, Yunlong ZHOU, Cong CHEN. Analysis and calculation of void fraction of gas-liquid two-phase flow in vertical riser under fluctuating vibration [J]. CIESC Journal, 2023, 74(6): 2391-2403. |
[14] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[15] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||