CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 4054-4061.DOI: 10.11949/0438-1157.20220686
• Energy and environmental engineering • Previous Articles Next Articles
Nini YUAN(), Tuo GUO, Hongcun BAI, Yurong HE, Yongning YUAN, Jingjing MA, Qingjie GUO()
Received:
2022-05-12
Revised:
2022-06-02
Online:
2022-10-09
Published:
2022-09-05
Contact:
Qingjie GUO
袁妮妮(), 郭拓, 白红存, 何育荣, 袁永宁, 马晶晶, 郭庆杰()
通讯作者:
郭庆杰
作者简介:
袁妮妮(1986—),女,博士研究生,讲师,yuannini727@163.com
基金资助:
CLC Number:
Nini YUAN, Tuo GUO, Hongcun BAI, Yurong HE, Yongning YUAN, Jingjing MA, Qingjie GUO. Reaction process of CH4 on the surface of Fe2O3/Al2O3 oxygen carrier in chemical looping combustion: ReaxFF-MD simulation[J]. CIESC Journal, 2022, 73(9): 4054-4061.
袁妮妮, 郭拓, 白红存, 何育荣, 袁永宁, 马晶晶, 郭庆杰. 化学链燃烧过程Fe2O3/Al2O3载氧体表面CH4反应:ReaxFF-MD模拟[J]. 化工学报, 2022, 73(9): 4054-4061.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 Potential energy curves (a) and the number of CH4 molecules (b) of the oxidation of CH4 on the surface of Fe2O3/Al2O3 oxygen carriersin chemical looping combustion at various temperature
Fig.3 Production distribution and their molecule number of the reaction process of CH4 on thesurface of oxygen carriers during chemical looping combustion at 3000 K
Fig.4 Schematic of the reaction process and production distribution of CH4 on the surface of Fe2O3/Al2O3oxygen carrier during chemical looping combustion
1 | Fan L S, Zeng L, Luo S W. Chemical-looping technology platform[J]. AIChE Journal, 2015, 61(1): 2-22. |
2 | Wang P, Means N, Shekhawat D, et al. Chemical-looping combustion and gasification of coals and oxygen carrier development: a brief review[J]. Energies, 2015, 8(10): 10605-10635. |
3 | Wang Y X, Hu X D, Guo T, et al. Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons[J]. Frontiers of Chemical Science and Engineering, 2021, 15(3): 493-504. |
4 | 周石杰, 任祯, 杨宇森, 等. 不同形貌金属氧化物的制备及其在工业催化反应中的应用[J]. 化工学报, 2021, 72(6): 2972-3001. |
Zhou S J, Ren Z, Yang Y S, et al. Preparation and application of metal oxides with various morphology for industrial catalysis[J]. CIESC Journal, 2021, 72(6): 2972-3001. | |
5 | Luo S W, Zeng L, Fan L S. Chemical looping technology: oxygen carrier characteristics[J]. Annual Review of Chemical and Biomolecular Engineering, 2015, 6: 53-75. |
6 | Zeng L, Cheng Z, Fan J A, et al. Metal oxide redox chemistry for chemical looping processes[J]. Nature Reviews Chemistry, 2018, 2(11): 349-364.[66] |
7 | 袁妮妮, 白红存, 安梅, 等. 化学链过程中Cu低浓度掺杂改性Fe-基载氧体反应性能:实验与理论模拟[J]. 化工学报, 2020, 71(11): 5294-5302. |
Yuan N N, Bai H C, An M, et al. Reactivity of low-concentration Cu-doped modified Fe-based oxygen carrier in chemical looping: experiments and theoretical simulations[J]. CIESC Journal, 2020, 71(11): 5294-5302. | |
8 | Zhang X L, Gao Z D, Liu Y Z, et al. Experimental and mechanistic study on chemical looping combustion of caking coal[J]. Chinese Journal of Chemical Engineering, 2021, 37: 89-96. |
9 | Zhang J S, Guo Q J, Liu Y Z, et al. Preparation and characterization of Fe2O3/Al2O3 using the solution combustion approach for chemical looping combustion[J]. Industrial & Engineering Chemistry Research, 2012, 51(39): 12773-12781. |
10 | Bohn C D, Cleeton J P, Müller C R, et al. Stabilizing iron oxide used in cycles of reduction and oxidation for hydrogen production[J]. Energy & Fuels, 2010, 24(7): 4025-4033. |
11 | Kierzkowska A M, Bohn C D, Scott S A, et al. Development of iron oxide carriers for chemical looping combustion using sol-gel[J]. Industrial & Engineering Chemistry Research, 2010, 49(11): 5383-5391. |
12 | 程显名. 典型载氧体晶格氧释放规律及其化学链燃烧性能优化[D]. 昆明: 昆明理工大学, 2019. |
Cheng X M. Typical oxygen carrier lattice oxygen release rules and its chemical looping combustion performance optimization[D]. Kunming: Kunming University of Science and Technology, 2019. | |
13 | 王保文, 赵海波, 郑瑛, 等. 惰性载体 Al2O3对 Fe2O3及CuO氧载体煤化学链燃烧的影响[J]. 中国电机工程学报, 2011, 31(32): 53-61. |
Wang B W, Zhao H B, Zheng Y, et al. Effect of inert support Al2O3 on the chemical looping combustion of coal with Fe2O3 and CuO-based oxygen carrier[J]. Proceedings of the CSEE, 2011, 31(32): 53-61. | |
14 | Chen X, Zhang S, Xiao R, et al. Modification of traditionally impregnated Fe2O3/Al2O3 oxygen carriers by ultrasonic method and their performance in chemical looping combustion[J]. Greenhouse Gases: Science and Technology, 2017, 7(1): 65-77. |
15 | 程煜, 刘永卓, 田红景, 等. 铁基复合载氧体煤化学链气化反应特性及机理[J]. 化工学报, 2013, 64(7): 2587-2595. |
Cheng Y, Liu Y Z, Tian H J, et al. Chemical-looping gasification reaction characteristics and mechanism of coal and Fe-based composite oxygen carriers[J]. CIESC Journal, 2013, 64(7): 2587-2595. | |
16 | Bolt P H, Habraken F H P M, Geus J W. Formation of nickel, cobalt, copper, and iron aluminates from α- and γ-alumina-supported oxides: a comparative study[J]. Journal of Solid State Chemistry, 1998, 135(1): 59-69. |
17 | Abad A, García-Labiano F, de Diego L F, et al. Reduction kinetics of Cu-, Ni-, and Fe-based oxygen carriers using syngas (CO + H2) for chemical-looping combustion[J]. Energy & Fuels, 2007, 21(4): 1843-1853. |
18 | 王保文. 化学链燃烧技术中铁基氧载体的制备及其性能研究[D]. 武汉: 华中科技大学, 2008. |
Wang B W. Research on combustion synthesis of Fe2O3-based oxygen carrier and its performance used in chemical looping combustion[D]. Wuhan: Huazhong University of Science and Technology, 2008. | |
19 | Qin W, Wang Y, Dong C Q, et al. The synergetic effect of metal oxide support on Fe2O3 for chemical looping combustion: a theoretical study[J]. Applied Surface Science, 2013, 282: 718-723. |
20 | Qin W, Chen Q L, Wang Y, et al. Theoretical study of oxidation-reduction reaction of Fe2O3 supported on MgO during chemical looping combustion[J]. Applied Surface Science, 2013, 266: 350-354. |
21 | Zhu W B, Gong H, Han Y, et al. Development of a reactive force field for simulations on the catalytic conversion of C/H/O molecules on Cu-metal and Cu-oxide surfaces and application to Cu/CuO-based chemical looping[J]. The Journal of Physical Chemistry C, 2020, 124(23): 12512-12520. |
22 | Li X X, Zheng M, Ren C X, et al. ReaxFF molecular dynamics simulations of thermal reactivity of various fuels in pyrolysis and combustion[J]. Energy & Fuels, 2021, 35(15): 11707-11739. |
23 | Qiu Y, Zhong W Q, Shao Y J, et al. Reactive force field molecular dynamics (ReaxFF MD) simulation of coal oxy-fuel combustion[J]. Powder Technology, 2020, 361: 337-348. |
24 | Han Y, Jiang D D, Zhang J L, et al. Development, applications and challenges of ReaxFF reactive force field in molecular simulations[J]. Frontiers of Chemical Science and Engineering, 2016, 10(1): 16-38. |
25 | Diao Z J, Zhao Y M, Chen B, et al. ReaxFF reactive force field for molecular dynamics simulations of epoxy resin thermal decomposition with model compound[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 618-624. |
26 | te Velde G, Bickelhaupt F M, Baerends E J, et al. Chemistry with ADF[J]. Journal of Computational Chemistry, 2001, 22(9): 931-967. |
27 | Zheng Y X, Hong S, Psofogiannakis G, et al. Modeling and in situ probing of surface reactions in atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2017, 9(18): 15848-15856. |
28 | Abolfath R M, van Duin A C T, Brabec T. Reactive molecular dynamics study on the first steps of DNA damage by free hydroxyl radicals[J]. The Journal of Physical Chemistry. A, 2011, 115(40): 11045-11049. |
29 | Liu X L, Li X X, Liu J, et al. Study of high density polyethylene (HDPE) pyrolysis with reactive molecular dynamics[J]. Polymer Degradation and Stability, 2014, 104: 62-70. |
30 | 贺红坡. 煤中含氮模型化合物富氧燃烧的ReaxFF反应分子动力学研究[D]. 武汉: 华中科技大学, 2017. |
He H P. Study of the nitrogen-containing model compounds in coal oxy-fuel combustion via ReaxFF molecular dynamics simulation[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
31 | Hong D K, Guo X. A reactive molecular dynamics study of CH4 combustion in O2/CO2/H2O environments[J]. Fuel Processing Technology, 2017, 167: 416-424. |
32 | Dong C Q, Sheng S H, Qin W, et al. Density functional theory study on activity of α-Fe2O3 in chemical-looping combustion system[J]. Applied Surface Science, 2011, 257(20): 8647-8652. |
33 | Xiao X B, Qin W, Wang J Y, et al. Effect of surface Fe-S hybrid structure on the activity of the perfect and reduced α-Fe2O3(001) for chemical looping combustion[J]. Applied Surface Science, 2018, 440: 29-34. |
34 | Lin C F, Qin W, Dong C Q. H2S adsorption and decomposition on the gradually reduced α-Fe2O3(001) surface: a DFT study[J]. Applied Surface Science, 2016, 387: 720-731. |
35 | Huang L, Tang M C, Fan M H, et al. Density functional theory study on the reaction between hematite and methane during chemical looping process[J]. Applied Energy, 2015, 159: 132-144. |
36 | Burger C M, Zhu W B, Ma G M, et al. Experimental and computational investigations of ethane and ethylene kinetics with copper oxide particles for chemical looping combustion[J]. Proceedings of the Combustion Institute, 2021, 38(4): 5249-5257. |
37 | Hu J J, Li C, Zhang Q G, et al. Using chemical looping gasification with Fe2O3/Al2O3 oxygen carrier to produce syngas (H2 +CO) from rice straw[J]. International Journal of Hydrogen Energy, 2019, 44(6): 3382-3386. |
38 | 冯于川. 化学链重整制氢技术中镍基及铁基载氧体的反应性及其机理研究[D]. 武汉: 华中科技大学, 2019. |
Feng Y C. Study of reactivity and mechanism of nickel-and iron-based oxygen carriers in chemical looping reforming[D]. Wuhan: Huazhong University of Science and Technology, 2019. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[3] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[4] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[5] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[6] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[7] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[8] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[9] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[10] | Mingchuan LI, Shuanshi FAN, Fuhai XU, Huidong LU, Xiaojun LI. Existence and Laplace transform of the solution to Stefan phase change model in thermal dissociation hydrate [J]. CIESC Journal, 2023, 74(4): 1746-1754. |
[11] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
[12] | Jinfeng HE, Xiuzhen LI, Jianyao KOU, Tingjie TAO, Can YU, Huan LIU, Yongyuan CHEN, Haojian ZHAO, Dahao JIANG, Xiaonian LI. Ethanol upgrading to higher alcohols over ordered mesoporous alumina supported Cu-based catalysts [J]. CIESC Journal, 2023, 74(3): 1082-1091. |
[13] | Ke YANG, Chensheng WANG, Hong JI, Kai ZHENG, Zhixiang XING, Haipu BI, Juncheng JIANG. Experimental study on inhibition of methane explosion by polydopamine coated mixed powder [J]. CIESC Journal, 2022, 73(9): 4245-4254. |
[14] | Jiaming WANG, Xuehua RUAN, Gaohong HE. Research progress of membrane separation materials for different industrial CO2-containing mixtures [J]. CIESC Journal, 2022, 73(8): 3417-3432. |
[15] | Yugong CHEN, Hao CHEN, Yaosong HUANG. Study on pyrolysis mechanism of hexamethyldisiloxane using reactive molecular dynamics simulations [J]. CIESC Journal, 2022, 73(7): 2844-2857. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||