CIESC Journal ›› 2023, Vol. 74 ›› Issue (7): 2988-2998.DOI: 10.11949/0438-1157.20230240
• Process system engineering • Previous Articles Next Articles
Zhaolun WEN1(), Peirui LI1, Zhonglin ZHANG1(
), Xiao DU1, Qiwang HOU1,2, Yegang LIU1,3, Xiaogang HAO1(
), Guoqing GUAN4
Received:
2023-03-15
Revised:
2023-06-16
Online:
2023-08-31
Published:
2023-07-05
Contact:
Zhonglin ZHANG, Xiaogang HAO
文兆伦1(), 李沛睿1, 张忠林1(
), 杜晓1, 侯起旺1,2, 刘叶刚1,3, 郝晓刚1(
), 官国清4
通讯作者:
张忠林,郝晓刚
作者简介:
文兆伦(1997—),男,硕士研究生,2269135417@qq.com
基金资助:
CLC Number:
Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration[J]. CIESC Journal, 2023, 74(7): 2988-2998.
文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998.
温度/℃ | 压力/kPa | 空气处理/(m3/h,标准工况) | 组成/%(mol) | ||
---|---|---|---|---|---|
氮气 | 氧气 | 氩气 | |||
25 | 101 | 166900 | 0.7809 | 0.2095 | 0.0096 |
Table 1 Feeding conditions of raw materials
温度/℃ | 压力/kPa | 空气处理/(m3/h,标准工况) | 组成/%(mol) | ||
---|---|---|---|---|---|
氮气 | 氧气 | 氩气 | |||
25 | 101 | 166900 | 0.7809 | 0.2095 | 0.0096 |
参数 | 上塔 | 下塔 | 粗氩塔 | 精氩塔 |
---|---|---|---|---|
理论级数 | 55 | 35 | 80 | 38 |
进料位置 | 1/8/22/25/28/33/55 | 1/35 | 1/80 | 1/38 |
产品抽出位置 | 1/23/28/55 | 1/21/35 | 1/80 | 1/38 |
塔顶温度/℃ | -192.17 | -178.04 | -191.64 | -192.17 |
塔底温度/℃ | -179.33 | -174.27 | -185.65 | -182.00 |
操作压力/kPa | 150 | 540 | 150 | 150 |
Table 2 Parameters of traditional air separation distillation column
参数 | 上塔 | 下塔 | 粗氩塔 | 精氩塔 |
---|---|---|---|---|
理论级数 | 55 | 35 | 80 | 38 |
进料位置 | 1/8/22/25/28/33/55 | 1/35 | 1/80 | 1/38 |
产品抽出位置 | 1/23/28/55 | 1/21/35 | 1/80 | 1/38 |
塔顶温度/℃ | -192.17 | -178.04 | -191.64 | -192.17 |
塔底温度/℃ | -179.33 | -174.27 | -185.65 | -182.00 |
操作压力/kPa | 150 | 540 | 150 | 150 |
参数 | 数值 |
---|---|
NVR | 23 |
NWN | 9 |
NT1 | 110 |
NT2 | 70 |
NT3 | 38 |
TAC/ | 10.06 |
Table 3 Analysis of economic optimization results of single-tower distillation based air separation process in dividing wall column
参数 | 数值 |
---|---|
NVR | 23 |
NWN | 9 |
NT1 | 110 |
NT2 | 70 |
NT3 | 38 |
TAC/ | 10.06 |
产品名称 | 产量/(m3/h,标准工况) | 纯度/% | ||
---|---|---|---|---|
企业生产数据 | 常规双塔空分 | 隔壁单塔空分 | ||
空气 | 165800 | 166900 | 166900 | — |
氧气 | 30000 | 34800 | 34900 | >99.6 |
氮气 | 17350 | 63000 | 63000 | >99.99 |
氩气 | 670 | 1030 | 1100 | >99.999 |
制氧能耗/ (kW∙h/m3,标准工况) | 0.43 | 0.42 | 0.31 | — |
Table 4 Comparison of design parameters
产品名称 | 产量/(m3/h,标准工况) | 纯度/% | ||
---|---|---|---|---|
企业生产数据 | 常规双塔空分 | 隔壁单塔空分 | ||
空气 | 165800 | 166900 | 166900 | — |
氧气 | 30000 | 34800 | 34900 | >99.6 |
氮气 | 17350 | 63000 | 63000 | >99.99 |
氩气 | 670 | 1030 | 1100 | >99.999 |
制氧能耗/ (kW∙h/m3,标准工况) | 0.43 | 0.42 | 0.31 | — |
参数 | 常规双塔空分 | 隔壁单塔空分 |
---|---|---|
精馏塔费用/(105 USD/a) | 3.09 | 3.96 |
换热器费用/(106 USD/a) | 4.87 | 1.95 |
压缩机费用/(106 USD/a) | 9.61 | 7.73 |
总投资费用/(107 USD/a) | 3.10 | 2.77 |
总运行费用/(107 USD/a) | 1.09 | 0.66 |
压缩机能耗/kW | 14470 | 10827 |
冷却器能耗/kW | 12325 | 6194 |
总耗能 | 43410 | 32481 |
二氧化碳排放量/(kg/h) | 4078 | 3051 |
年度总费用TAC/(106 USD/a) | 14.78 | 10.06 |
设备折旧年限/a | 8 | 8 |
Table 5 Comparison of simulated result
参数 | 常规双塔空分 | 隔壁单塔空分 |
---|---|---|
精馏塔费用/(105 USD/a) | 3.09 | 3.96 |
换热器费用/(106 USD/a) | 4.87 | 1.95 |
压缩机费用/(106 USD/a) | 9.61 | 7.73 |
总投资费用/(107 USD/a) | 3.10 | 2.77 |
总运行费用/(107 USD/a) | 1.09 | 0.66 |
压缩机能耗/kW | 14470 | 10827 |
冷却器能耗/kW | 12325 | 6194 |
总耗能 | 43410 | 32481 |
二氧化碳排放量/(kg/h) | 4078 | 3051 |
年度总费用TAC/(106 USD/a) | 14.78 | 10.06 |
设备折旧年限/a | 8 | 8 |
1 | 王莉君. 空分产品的应用领域及其发展探索[J]. 化工管理, 2019(20): 7-8. |
Wang L J. Application field and development exploration of air separation products[J]. Chemical Enterprise Management, 2019(20): 7-8. | |
2 | He X F, Liu Y N, Rehman A, et al. A novel air separation unit with energy storage and generation and its energy efficiency and economy analysis[J]. Applied Energy, 2021, 281: 115976. |
3 | 智研咨询. 2021年中国气体分离设备行业运营情况分析: 气体分离及液化设备产量 14.85万台[EB/OL]. [2022-05]. . |
Intelligence Research Group. Analysis of the operation of China's gas separation equipment industry in 2021: the output of gas separation and liquefaction equipment was 148,500 units [EB/OL]. [2022-05]. . | |
4 | 彭相磊. 兖矿国宏30000 Nm3/h空分净化装置节能和优化[D]. 天津: 天津大学, 2012. |
Peng X L. Yankuang Guohong 30000 Nm3/h air separation purification device energy saving optimization[D]. Tianjin: Tianjin University, 2012. | |
5 | Smith A R, Klosek J. A review of air separation technologies and their integration with energy conversion processes[J]. Fuel Processing Technology, 2001, 70(2): 115-134. |
6 | 杨尚宇. 空分装置变负荷操作的模拟与优化[D]. 包头: 内蒙古科技大学, 2020. |
Yang S Y. Simulation and optimization of variable load operation in air separation unit[D]. Baotou: Inner Mongolia University of Science & Technology, 2020. | |
7 | Ebrahimi A, Ziabasharhagh M. Optimal design and integration of a cryogenic air separation unit (ASU) with liquefied natural gas (LNG) as heat sink, thermodynamic and economic analyses[J]. Energy, 2017, 126: 868-885. |
8 | 郑捷宇, 厉彦忠, 司标, 等. 基于㶲分析的空分流程对比研究[J]. 工程热物理学报, 2015, 36(10): 2097-2101. |
Zheng J Y, Li Y Z, Si B, et al. Comparative study of air separation process based on exergy analysis[J]. Journal of Engineering Thermophysics, 2015, 36(10): 2097-2101. | |
9 | Taniguchi Masaaki, 张应武, 刘有存. 基于㶲分析的节能型空分装置[J]. 钢铁译文集, 2016(1): 58-62. |
Taniguchi M, Zhang Y W, Liu Y C. Energy saving air-seperation plant based on exergy analysis [J]. Collection of steel translations, 2016(1): 58-62. | |
10 | Kender R, Rößler F, Wunderlich B, et al. Improving the load flexibility of industrial air separation units using a pressure-driven digital twin[J]. AIChE Journal, 2022, 68(7): e17692. |
11 | Asma-ul-Husna, Hasan R, Rashid S A, et al. Energy saving in cryogenic air separation process applying self-heat recuperation technology[C]//Proceedings of the International Conference on Mechanical Engineering and Renewable Energy 2015. Chittagong, Bangladesh, 2015. |
12 | Janusz-Szymańska K, Dryjańska A. Possibilities for improving the thermodynamic and economic characteristics of an oxy-type power plant with a cryogenic air separation unit[J]. Energy, 2015, 85: 45-61. |
13 | 叶青, 裘兆蓉, 韶晖, 等. 热偶精馏技术与应用进展[J]. 天然气化工, 2006, 31(4): 53-56, 65. |
Ye Q, Qiu Z R, Shao H, et al. Progress in the technology and application of thermally coupled distillation [J]. Natural Gas Chemistry, 2006, 31(4): 53-56, 65. | |
14 | 马晨皓, 曾爱武. 隔壁塔流程模拟及节能效益的研究[J]. 化学工程, 2013, 41(3): 1-5, 15. |
Ma C H, Zeng A W. Simulation of dividing-wall-column process and its energy-saving benefits[J]. Chemical Engineering(China), 2013, 41(3): 1-5, 15. | |
15 | 陈梦琪. 热泵常规隔壁塔与热泵共沸精馏隔壁塔的控制研究[D]. 东营: 中国石油大学(华东), 2018. |
Chen M Q. Control of heat pump assisted conventional and azeotropic dividing wall columns[D]. Dongying: China University of Petroleum, 2018. | |
16 | Kender R, Rößler F, Wunderlich B, et al. Development of control strategies for an air separation unit with a divided wall column using a pressure-driven digital twin[J]. Chemical Engineering and Processing-Process Intensification, 2022, 176: 108893. |
17 | 裘兆蓉, 叶青, 李成益. 国内外分隔壁精馏塔现状与发展趋势[J]. 江苏工业学院学报, 2005, 17(1): 58-61. |
Qiu Z R, Ye Q, Li C Y. Status and development trends of dividing wall column at home and abroad[J]. Journal of Jiangsu Polytechnic University, 2005, 17(1): 58-61. | |
18 | 张月明. 隔壁精馏塔技术应用于反应精馏及空气分离的研究[D]. 青岛: 中国石油大学, 2010. |
Zhang Y M. Study on the application of dividing wall column to the reactive distillation and air separation[D]. Qingdao: China University of Petroleum, 2010. | |
19 | 马占华, 翟诚, 李军,等. 隔壁式空分精馏塔应用性能研究[J]. 化学工程, 2012, 40(2): 1-6. |
Ma Z H, Zhai C, Li J, et al. Application of air separation dividing wall column[J]. Chemical Engineering (China), 2012, 40(2): 1-6. | |
20 | Kansha Y, Tsuru N, Sato K, et al. Self-heat recuperation technology for energy saving in chemical processes[J]. Industrial & Engineering Chemistry Research, 2009, 48(16): 7682-7686. |
21 | 陈东良, 张忠林, 杨景轩, 等. 基于自热再生的化学吸收法CO2捕集工艺模拟及节能分析[J]. 化工学报, 2019, 70(8): 2938-2945. |
Chen D L, Zhang Z L, Yang J X, et al. Process simulation and energy saving analysis of CO2 capture by chemical absorption method based on self-heat recuperation[J]. CIESC Journal, 2019, 70(8): 2938-2945. | |
22 | Fushimi C, Kansha Y, Aziz M, et al. Novel drying process based on self-heat recuperation technology[J]. Drying Technology, 2010, 29(1): 105-110. |
23 | 白桂培, 韩东, 姚瑶, 等. 基于自回热原理的木材干燥过程的热力学分析[J]. 能源化工, 2017, 38(2): 1-7. |
Bai G P, Han D, Yao Y, et al. Thermodynamic analysis of wood drying process based on self-heat recuperation technology[J]. Energy Chemical Industry, 2017, 38(2): 1-7. | |
24 | Kansha Y, Kishimoto A, Tsutsumi A. Application of the self-heat recuperation technology to crude oil distillation[J]. Applied Thermal Engineering, 2012, 43: 153-157. |
25 | 陈昱珍. 自热再生技术在原油蒸馏装置中的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
Chen Y Z. The application of self-heat recuperation technology in crude oil distillation units[D]. Harbin: Harbin Institute of Technology, 2015. | |
26 | Fu Q, Zhai R R, Feng L J, et al. Performance analysis of the acid gas removal from syngas based on self-heat recuperation technology[J]. Applied Thermal Engineering, 2023, 219: 119506. |
27 | Fu Q, Kansha Y, Song C F, et al. An advanced cryogenic air separation process based on self-heat recuperation for CO2 separation[J]. Energy Procedia, 2014, 61: 1673-1676. |
28 | Fu Q, Kansha Y, Song C F, et al. A cryogenic air separation process based on self-heat recuperation for oxy-combustion plants[J]. Applied Energy, 2016, 162: 1114-1121. |
29 | Fu Q, Kansha Y, Song C F, et al. An elevated-pressure cryogenic air separation unit based on self-heat recuperation technology for integrated gasification combined cycle systems[J]. Energy, 2016, 103: 440-446. |
30 | Lin B S, Malmali M. Energy and exergy analysis of multi-stage vacuum membrane distillation integrated with mechanical vapor compression[J]. Separation and Purification Technology, 2023, 306: 122568. |
31 | 邹环泽. 深冷空分的过程模拟与节能分析[D]. 重庆: 重庆大学, 2017. |
Zou H Z. The simulation and analysis of the process cryogenic air separation[D]. Chongqing: Chongqing University, 2017. | |
32 | 杨泽萌, 韩晓萌, 卢新发. 基于稳态模拟技术的空分增氮工艺流程设计与实施[J]. 冶金动力, 2022, 41(1): 39-42. |
Yang Z M, Han X M, Lu X F. Design and implementation of air separation nitrogen increase process based on steady-state simulation technology[J]. Metallurgical Power, 2022, 41(1): 39-42. | |
33 | Saedi M, Mehrpooya M, Shabani A, et al. Proposal and investigation of a novel process configuration for production of neon from cryogenic air separation unit[J]. Sustainable Energy Technologies and Assessments, 2022, 50: 101875. |
34 | Li J E, Zhang F J, Pan Q, et al. Performance enhancement of reactive dividing wall column based on self-heat recuperation technology[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 12179-12191. |
35 | Douglas J M. Conceptual Design of Chemical Processes[M]. New York: McGraw-Hill Book Company, 1988: 30-216. |
36 | Yu H, Ye Q, Xu H, et al. Design and control of dividing-wall column for tert-butanol dehydration system via heterogeneous azeotropic distillation[J]. Industrial & Engineering Chemistry Research, 2015, 54(13): 3384-3397 |
37 | 刘叶刚, 张忠林, 侯起旺, 等. TBCFB合成气制甲醇工艺过程的概念设计和计算机模拟[J]. 化工学报, 2021, 72(9): 4838-4846. |
Liu Y G, Zhang Z L, Hou Q W, et al. Process design and simulation of synthesis gas to methanol in TBCFB system [J]. CIESC Journal, 2021, 72(9): 4838-4846. | |
38 | An D C, Cai W F, Xia M, et al. Design and control of reactive dividing-wall column for the production of methyl acetate[J]. Chemical Engineering and Processing: Process Intensification, 2015, 92: 45-60. |
39 | 田奇琦. 大型空气分离系统建模与低能耗化研究[D]. 武汉: 华中科技大学, 2016. |
Tian Q Q. A study on modeling large-scale air separation units and low energy consumption[D]. Wuhan: Huazhong University of Science and Technology, 2016. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[3] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[4] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[5] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[6] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[7] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[8] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
[9] | Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488. |
[10] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
[11] | Jinjia WEI, Lei LIU, Xiaoping YANG. Research progress of loop heat pipes for heat dissipation of high-heat-flux electronic devices [J]. CIESC Journal, 2023, 74(1): 60-73. |
[12] | Nini YUAN, Tuo GUO, Hongcun BAI, Yurong HE, Yongning YUAN, Jingjing MA, Qingjie GUO. Reaction process of CH4 on the surface of Fe2O3/Al2O3 oxygen carrier in chemical looping combustion: ReaxFF-MD simulation [J]. CIESC Journal, 2022, 73(9): 4054-4061. |
[13] | Peng WEI, Jun CHEN, Zhiguo WANG, Fei LIU. Improved productivity strategy of simulated moving bed based on binary-partial-discard [J]. CIESC Journal, 2022, 73(7): 3099-3108. |
[14] | Huiying LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Influence of vapor feed on optimal design of dividing wall column [J]. CIESC Journal, 2022, 73(7): 3090-3098. |
[15] | Taoyan ZHAO, Jiangtao CAO, Ping LI, Lin FENG, Yu SHANG. Application of interval type-2 fuzzy immune PID controller to temperature control system for uncatalysed oxidation of cyclohexane [J]. CIESC Journal, 2022, 73(7): 3166-3173. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 874
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 443
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||