CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 4095-4102.DOI: 10.11949/0438-1157.20220442
• Energy and environmental engineering • Previous Articles Next Articles
Caifeng LI1(), Xiao WANG2, Gangjian LI2, Junzhang LIN1, Weidong WANG1, Qinglin SHU3, Yanbin CAO1, Meng XIAO2()
Received:
2022-03-28
Revised:
2022-06-20
Online:
2022-10-09
Published:
2022-09-05
Contact:
Meng XIAO
李彩风1(), 王晓2, 李岗建2, 林军章1, 汪卫东1, 束青林3, 曹嫣镔1, 肖盟2()
通讯作者:
肖盟
作者简介:
李彩风(1981—),女,博士,副研究员,licaifeng136.slyt@sinopec.com
CLC Number:
Caifeng LI, Xiao WANG, Gangjian LI, Junzhang LIN, Weidong WANG, Qinglin SHU, Yanbin CAO, Meng XIAO. Synergistic relationship between hydrocarbon degrading and emulsifying strain SL-1 and endogenous bacteria during oil displacement[J]. CIESC Journal, 2022, 73(9): 4095-4102.
李彩风, 王晓, 李岗建, 林军章, 汪卫东, 束青林, 曹嫣镔, 肖盟. 嗜烃乳化菌SL-1与内源菌协同驱油的菌群作用关系研究[J]. 化工学报, 2022, 73(9): 4095-4102.
Add to citation manager EndNote|Ris|BibTeX
编号 | 样品组成 |
---|---|
A | 地层水 |
B | 地层水+菌株SL-1 |
C | 地层水+营养激活剂 |
D | 地层水+菌株SL-1+营养激活剂 |
Table 1 Composition of each sample
编号 | 样品组成 |
---|---|
A | 地层水 |
B | 地层水+菌株SL-1 |
C | 地层水+营养激活剂 |
D | 地层水+菌株SL-1+营养激活剂 |
序列 | 名称 | 组成/% | |
---|---|---|---|
C组 | D组 | ||
1 | H2 | 0.047 | 0.083 |
2 | CO2 | 74.534 | 48.898 |
3 | CO | 0.007 | 0.003 |
4 | CH4 | 24.976 | 50.828 |
5 | 乙烷 | 0.193 | 0.135 |
6 | 乙烯 | 0.009 | 0.005 |
7 | 丙烷 | 0.082 | 0.027 |
8 | 异丁烷 | 0.066 | 0.008 |
9 | 正丁烷 | 0.051 | 0.005 |
10 | 异戊烷 | 0.007 | 0.003 |
11 | 正戊烷 | 0.020 | 0.005 |
12 | 2, 2-二甲基丙烷 | 0.007 | 0.000 |
Table 2 Analysis of gas composition
序列 | 名称 | 组成/% | |
---|---|---|---|
C组 | D组 | ||
1 | H2 | 0.047 | 0.083 |
2 | CO2 | 74.534 | 48.898 |
3 | CO | 0.007 | 0.003 |
4 | CH4 | 24.976 | 50.828 |
5 | 乙烷 | 0.193 | 0.135 |
6 | 乙烯 | 0.009 | 0.005 |
7 | 丙烷 | 0.082 | 0.027 |
8 | 异丁烷 | 0.066 | 0.008 |
9 | 正丁烷 | 0.051 | 0.005 |
10 | 异戊烷 | 0.007 | 0.003 |
11 | 正戊烷 | 0.020 | 0.005 |
12 | 2, 2-二甲基丙烷 | 0.007 | 0.000 |
项目 | A_7 | B_7 | C_7 | D_7 |
---|---|---|---|---|
Shannon | 2.3549 | 1.9228 | 1.1961 | 1.4179 |
Simpson | 0.1782 | 0.238 | 0.4451 | 0.3236 |
Chao1 | 144.9406 | 80.6471 | 34.3903 | 42.8603 |
Table 3 Alpha diversity analysis
项目 | A_7 | B_7 | C_7 | D_7 |
---|---|---|---|---|
Shannon | 2.3549 | 1.9228 | 1.1961 | 1.4179 |
Simpson | 0.1782 | 0.238 | 0.4451 | 0.3236 |
Chao1 | 144.9406 | 80.6471 | 34.3903 | 42.8603 |
1 | 于洋, 刘琦, 彭勃, 等. 微生物降解稠油中沥青质的研究进展[J]. 化工进展, 2021, 40(3): 1574-1585. |
Yu Y, Liu Q, Peng B, et al. A review of the biodegradation of asphaltene in heavy oil[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1574-1585. | |
2 | 李彩风, 束青林, 韩保锋, 等. 嗜烃乳化功能菌在多孔介质中的生长规律及驱油机理[J]. 油气地质与采收率, 2021, 28(2): 27-33. |
Li C F, Shu Q L, Han B F, et al. Study on growth law and oil displacement mechanism of hydrocarbonophilic emulsifying bacteria in porous media[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(2): 27-33. | |
3 | Asadollahi L, Salehizadeh H, Yan N. Investigation of biosurfactant activity and asphaltene biodegradation by Bacillus cereus [J]. Journal of Polymers and the Environment, 2016, 24(2): 119-128. |
4 | Yusoff D F, Raja Abd Rahman R N Z, Masomian M,et al. Newly isolated alkane hydroxylase and lipase producing Geobacillus and Anoxybacillus species involved in crude oil degradation[J]. Catalysts, 2020, 10(8): 851. |
5 | Xia W J, Tong L H, Jin T Z, et al. N,S-Heterocycles biodegradation and biosurfactantproduction under CO2/N2 conditions by Pseudomonas and its application on heavy oil recovery[J]. Chemical Engineering Journal, 2021, 413: 128771. |
6 | Lin J H, Zhang K C, Tao W Y, et al. Geobacillus strains that have potential value in microbial enhanced oil recovery[J]. Applied Microbiology and Biotechnology, 2019, 103(20): 8339-8350. |
7 | Zhou J F, Gao P K, Dai X H, et al. Heavy hydrocarbon degradation of crude oil by a novel thermophilic Geobacillus stearothermophilus strain A-2[J]. International Biodeterioration & Biodegradation, 2018, 126: 224-230. |
8 | 李国强, 纪凯华, 李佳斌, 等. 嗜热解烃菌DM-2产生的生物乳化剂[J]. 微生物学通报, 2014, 41(4): 585-591. |
Li G Q, Ji K H, Li J B, et al. Bio-emulsifier produced by a thermophilic hydrocarbon-degrading strain DM-2[J]. Microbiology China, 2014, 41(4): 585-591. | |
9 | 宋永亭, 李彩风, 冯云, 等. 高温产乳化剂菌原位生长下的微观驱油机理[J]. 油气地质与采收率, 2018, 25(2): 90-95. |
Song Y T, Li C F, Feng Y, et al. Microscopic oil displacement mechanism of thermophilic bioemulsifier-producing bacteria in-situ growing[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(2): 90-95. | |
10 | 李彩风, 吴晓玲, 刘涛, 等. 高温产生物乳化剂菌株SL-1的性能评价及物模驱油研究[J]. 安徽大学学报(自然科学版), 2014, 38(1): 90-95. |
Li C F, Wu X L, Liu T, et al. Study on the property evaluation and physical simulation oil displacement of a thermophilic bioemulsifier-producing bacteria SL-1[J]. Journal of Anhui University(Natural Science Edition), 2014, 38(1): 90-95. | |
11 | 孙虎, 李浩帅, 包木太, 等. 化学分散剂作用下不同原油分散效果的影响因素研究[J]. 中国海洋大学学报(自然科学版), 2021, 51(S1): 43-49. |
Sun H, Li H S, Bao M T, et al. Research on influencing factors of different crude oil dispersion effect under the action of chemical dispersants[J]. Periodical of Ocean University of China, 2021, 51(S1): 43-49. | |
12 | 林军章, 冯云, 谭晓明, 等. 原油厌氧微生物降解特征分析[J]. 南京工业大学学报(自然科学版), 2018, 40(3): 49-54. |
Lin J Z, Feng Y, Tan X M, et al. Characteristics of crude oil biodegradation by anaerobic microbial[J]. Journal of Nanjing Tech University (Natural Science Edition), 2018, 40(3): 49-54. | |
13 | 王璟, 王春江, 赵冬至, 等. 渤海湾和黄河口外表层海水中正构烷烃的组成、分布及来源[J]. 海洋环境科学, 2010, 29(2): 242-245. |
Wang J, Wang C J, Zhao D Z, et al. Composition, distribution and source of n-alkanes in surface water in Bohai Bay and outside Huanghe Estuary[J]. Marine Environmental Science, 2010, 29(2): 242-245. | |
14 | Shi J X, Han Y X, Xu C Y, et al. Enhanced biodegradation of coal gasification wastewater with anaerobic biofilm on polyurethane (PU), powdered activated carbon (PAC), and biochar[J]. Bioresource Technology, 2019, 289: 121487. |
15 | Haouari O, Fardeau M L, Cayol J L, et al. Thermodesulfovibrio hydrogeniphilus sp. nov., a new thermophilic sulphate-reducing bacterium isolated from a Tunisian hot spring[J]. Systematic and Applied Microbiology, 2008, 31(1): 38-42. |
16 | Liang B, Wang L Y, Zhou Z C, et al. High frequency of Thermodesulfovibrio spp. and Anaerolineaceae in association with Methanoculleus spp. in a long-term incubation of n-alkanes-degrading methanogenic enrichment culture[J]. Frontiers in Microbiology, 2016, 7: 1431. |
17 | Roumagnac M, Pradel N, Bartoli M, et al. Responses to the hydrostatic pressure of surface and subsurface strains of Pseudothermotoga elfii revealing the piezophilic nature of the strain originating from an oil-producing well[J]. Frontiers in Microbiology, 2020, 11: 588771. |
18 | Jackson T J, Ramaley R F, Meinschein W G. Thermomicrobium, a new genus of extremely thermophilic bacteria[J]. International Journal of Systematic Bacteriology, 1973, 23(1): 28-36. |
19 | Yoon S Y, Noh H S, Kim E H, et al. The highly stable alcohol dehydrogenase of Thermomicrobium roseum: purification and molecular characterization[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2002, 132(2): 415-422. |
20 | Li P, Wang L, Feng L. Characterization of a novel Rieske-type alkane monooxygenase system in Pusillimonas sp. strain T7-7[J]. Journal of Bacteriology, 2013, 195(9): 1892-1901. |
21 | Segovia V, Reyes A, Rivera G, et al. Production of rhamnolipids by the Thermoanaerobacter sp. CM-CNRG TB177 strain isolated from an oil well in Mexico[J]. Applied Microbiology and Biotechnology, 2021, 105(14): 5833-5844. |
22 | Jayasinghearachchi H S, Sarma P M, Lal B. Biological hydrogen production by extremely thermophilic novel bacterium Thermoanaerobacter mathranii A3N isolated from oil producing well[J]. International Journal of Hydrogen Energy, 2012, 37(7): 5569-5578. |
23 | Nazina T N, Shestakova N M, Semenova E M, et al. Diversity of metabolically active bacteria in water-flooded high-temperature heavy oil reservoir[J]. Frontiers in Microbiology, 2017, 8: 707. |
24 | Chen L R, Du S Y, Xie L. Effects of pH on ex-situ biomethanation with hydrogenotrophic methanogens under thermophilic and extreme-thermophilic conditions[J]. Journal of Bioscience and Bioengineering, 2021, 131(2): 168-175. |
25 | Zhou L, Li K P, Mbadinga S M, et al. Analyses of n-alkanes degrading community dynamics of a high-temperature methanogenic consortium enriched from production water of a petroleum reservoir by a combination of molecular techniques[J]. Ecotoxicology (London, England), 2012, 21(6): 1680-1691. |
26 | Liu Y F, Qi Z Z, Shou L B, et al. Anaerobic hydrocarbon degradation in candidate phylum 'Atribacteria' (JS1) inferred from genomics[J]. The ISME Journal, 2019, 13(9): 2377-2390. |
27 | Veshareh M J, Poulsen M, Nick H M, et al. The light in the dark: in situ biorefinement of crude oil to hydrogen using typical oil reservoir Thermotoga strains[J]. International Journal of Hydrogen Energy, 2022, 47(8): 5101-5110. |
28 | Deng T C, Qian Y F, Chen X J, et al. Ciceribacter ferrooxidans sp. nov., a nitrate-reducing Fe(Ⅱ)-oxidizing bacterium isolated from ferrous ion-rich sediment[J]. Journal of Microbiology, 2020, 58(5): 350-356. |
29 | Duran R, Cravo-Laureau C. Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment[J]. FEMS Microbiology Reviews, 2016, 40(6): 814-830. |
30 | Louvado A, Gomes N C M, Simões M M Q, et al. Polycyclic aromatic hydrocarbons in deep sea sediments: microbe-pollutant interactions in a remote environment[J]. Science of the Total Environment, 2015, 526: 312-328. |
31 | Miralles G, Grossi V, Acquaviva M, et al. Alkane biodegradation and dynamics of phylogenetic subgroups of sulfate-reducing bacteria in an anoxic coastal marine sediment artificially contaminated with oil[J]. Chemosphere, 2007, 68(7): 1327-1334. |
32 | Zhang S Y, Wang Q F, Xie S G. Stable isotope probing identifies anthracene degraders under methanogenic conditions[J]. Biodegradation, 2012, 23(2): 221-230. |
33 | Castellane T C L, Campanharo J C, Colnago L A, et al. Characterization of new exopolysaccharide production by Rhizobium tropici during growth on hydrocarbon substrate[J]. International Journal of Biological Macromolecules, 2017, 96: 361-369. |
34 | Zhao H P, Wang L, Ren J R, et al. Isolation and characterization of phenanthrene-degrading strains Sphingomonas sp. ZP1 and Tistrella sp. ZP5[J]. Journal of Hazardous Materials, 2008, 152(3): 1293-1300. |
35 | 李金志, 冯云, 林军章, 等. 沾3区块内源微生物好氧和厌氧激活特征[J]. 南京工业大学学报(自然科学版), 2021, 43(5): 670-676. |
Li J Z, Feng Y, Lin J Z, et al. Characteristics of aerobic and anaerobic activation of endogenous microorganisms in Zhan3 block[J]. Journal of Nanjing Tech University (Natural Science Edition), 2021, 43(5): 670-676. | |
36 | Sasaki K, Morita M, Sasaki D, et al. Syntrophic degradation of proteinaceous materials by the thermophilic strains Coprothermobacter proteolyticus and Methanothermobacter thermautotrophicus [J]. Journal of Bioscience and Bioengineering, 2011, 112(5): 469-472. |
37 | Zhu X P, Cao Q, Chen Y C, et al. Effects of mixing and sodium formate on thermophilic in situ biogas upgrading by H2 addition[J]. Journal of Cleaner Production, 2019, 216: 373-381. |
[1] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[2] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[3] | Zhen LONG, Jinhang WANG, Junjie REN, Yong HE, Xuebing ZHOU, Deqing LIANG. Experimental study on inhibition effect of natural gas hydrate formation by mixing ionic liquid with PVCap [J]. CIESC Journal, 2023, 74(6): 2639-2646. |
[4] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[5] | Weijiang CHENG, Heqi WANG, Xiang GAO, Na LI, Sainan MA. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 571-584. |
[6] | Yu XIE, Min ZHANG, Weiguo HU, Yujun WANG, Guangsheng LUO. Study on efficient dissolution of D-7-ACA using membrane dispersion microreactor [J]. CIESC Journal, 2023, 74(2): 748-755. |
[7] | Jiaqing ZHANG, Rongpei JIANG, Weikang SHI, Boxiang WU, Chao YANG, Zhaohui LIU. Study on viscosity-temperature characteristics and component characteristics of rocket kerosene [J]. CIESC Journal, 2023, 74(2): 653-665. |
[8] | Kuan HUANG, Yongde MA, Zhenping CAI, Yanning CAO, Lilong JIANG. Research progress in catalytic hydroconversion of lipid to second-generation biodiesel [J]. CIESC Journal, 2023, 74(1): 380-396. |
[9] | Zeguang HAO, Qian ZHANG, Zenglin GAO, Hongwen ZHANG, Zeyu PENG, Kai YANG, Litong LIANG, Wei HUANG. Study on synergistic effect of biomass and FCC slurry co-pyrolysis [J]. CIESC Journal, 2022, 73(9): 4070-4078. |
[10] | Wenzhang JIN, Yuling ZHANG, Xiaoyu JIA. Study on degradation efficiency of hydroxyethylidene diphosphonic acid by electrochemical advanced oxidation [J]. CIESC Journal, 2022, 73(9): 4062-4069. |
[11] | Xianlun XU, Yang QIAN, Xingwang ZHANG, Lecheng LEI. Study on treating soil contained pyrene by high voltage pulsed dielectric barrier discharge [J]. CIESC Journal, 2022, 73(9): 4025-4033. |
[12] | Guojun XI, Zihan LIU, Guangping LEI. Enhanced adsorption and separation of low concentration coalbed methane based on synergistic effect between FeTPPs and CuBTC [J]. CIESC Journal, 2022, 73(9): 3940-3949. |
[13] | Zhenhe XU, Hongjiang LI, Yu GAO, Zheng LI, Hanyan ZHANG, Baotong XU, Fu DING, Yaguang SUN. Preparation of In2O3/Ag:ZnIn2S4 “Type Ⅱ” heterogeneous structure materials for visible light catalysis [J]. CIESC Journal, 2022, 73(8): 3625-3635. |
[14] | Shiyuan HUANG, Jian DENG, Hanqin YUAN, Guohua WANG, Xingliang WU. Experimental study on activation of peroxymonosulfate by cobalt-enhanced ferromagnet [J]. CIESC Journal, 2022, 73(7): 3045-3056. |
[15] | Yanping JIA, Xue DING, Jian GANG, Zewei TONG, Haifeng ZHANG, Lanhe ZHANG. Optimization of process conditions for Mn enhanced Fe/C microelectrolysis and degradation mechanism of ink wastewater [J]. CIESC Journal, 2022, 73(5): 2183-2193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||