CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 4103-4112.DOI: 10.11949/0438-1157.20220431
• Energy and environmental engineering • Previous Articles Next Articles
Received:
2022-03-25
Revised:
2022-06-12
Online:
2022-10-09
Published:
2022-09-05
Contact:
Xiangjun LIU
通讯作者:
刘向军
作者简介:
马语峻(1998—),女,硕士研究生,s20200151@xs.ustb.edu.cn
基金资助:
CLC Number:
Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane[J]. CIESC Journal, 2022, 73(9): 4103-4112.
马语峻, 刘向军. 多孔陶瓷膜烟气水分回收理论与模型研究[J]. 化工学报, 2022, 73(9): 4103-4112.
Add to citation manager EndNote|Ris|BibTeX
工况 | 温度/℃ | 相对湿度/% | 水蒸气体积分数/% |
---|---|---|---|
1 | 80 | 94.0 | 15.29 |
2 | 70 | 93.0 | 11.73 |
3 | 60 | 88.0 | 9.66 |
4 | 50 | 87.0 | 7.90 |
5 | 40 | 85.0 | 7.72 |
6 | 30 | 83.0 | 5.28 |
7 | 20 | 67.0 | 3.63 |
8 | 20 | 60.0 | 3.25 |
Table 1 Flue gas conditions of 8 cases
工况 | 温度/℃ | 相对湿度/% | 水蒸气体积分数/% |
---|---|---|---|
1 | 80 | 94.0 | 15.29 |
2 | 70 | 93.0 | 11.73 |
3 | 60 | 88.0 | 9.66 |
4 | 50 | 87.0 | 7.90 |
5 | 40 | 85.0 | 7.72 |
6 | 30 | 83.0 | 5.28 |
7 | 20 | 67.0 | 3.63 |
8 | 20 | 60.0 | 3.25 |
参数 | 数值 |
---|---|
膜平均孔隙率 | 0.5 |
膜孔道的曲折度 | 1 |
膜选择层厚度 | 10 μm |
烟气来流速度 | 0.5 m·s-1 |
陶瓷膜管外直径 | 8 mm |
膜内通入冷却水温度 | 16℃ |
烟气比定压热容 | 1.005 J·g-1·K-1 |
烟气热导率 | 0.026 W·m-1·K-1 |
烟气动力黏度 | 2.2×10-6 Pa·s |
水的动力黏度 | 1.1×10-3 Pa·s |
烟气密度 | 1190 g·m-3 |
冷却水密度 | 106 g·m-3 |
Table 2 Parameters of water recovery from flue gas by ceramic membrane
参数 | 数值 |
---|---|
膜平均孔隙率 | 0.5 |
膜孔道的曲折度 | 1 |
膜选择层厚度 | 10 μm |
烟气来流速度 | 0.5 m·s-1 |
陶瓷膜管外直径 | 8 mm |
膜内通入冷却水温度 | 16℃ |
烟气比定压热容 | 1.005 J·g-1·K-1 |
烟气热导率 | 0.026 W·m-1·K-1 |
烟气动力黏度 | 2.2×10-6 Pa·s |
水的动力黏度 | 1.1×10-3 Pa·s |
烟气密度 | 1190 g·m-3 |
冷却水密度 | 106 g·m-3 |
1 | Jia C H, Yan P, Liu P, et al. Energy industrial water withdrawal under different energy development scenarios: a multi-regional approach and a case study of China[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110224. |
2 | Abdelaziz E A, Saidur R, Mekhilef S. A review on energy saving strategies in industrial sector[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 150-168. |
3 | Xiong Y Y, Tan H Z, Wang Y B, et al. Pilot-scale study on water and latent heat recovery from flue gas using fluorine plastic heat exchangers[J]. Journal of Cleaner Production, 2017, 161: 1416-1422. |
4 | Bai H Y, Zhu J, Chu J Z, et al. Influences of the mixed LiCl-CaCl2 liquid desiccant solution on a membrane-based dehumidification system: parametric analysis and mixing ratio selection[J]. Energy and Buildings, 2019, 183: 592-606. |
5 | Kim J F, Park A, Kim S J, et al. Harnessing clean water from power plant emissions using membrane condenser technology[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6425-6433. |
6 | Drioli E, Santoro S, Simone S, et al. ECTFE membrane preparation for recovery of humidified gas streams using membrane condenser[J]. Reactive and Functional Polymers, 2014, 79: 1-7. |
7 | Brunetti A, Macedonio F, Barbieri G, et al. Membrane condenser as emerging technology for water recovery and gas pre-treatment: current status and perspectives[J]. BMC Chemical Engineering, 2019, 1: 19. |
8 | Macedonio F, Brunetti A, Barbieri G, et al. Membrane condenser configurations for water recovery from waste gases[J]. Separation and Purification Technology, 2017, 181: 60-68. |
9 | Xiao L H, Yang M L, Yuan W Z, et al. Macroporous ceramic membrane condenser for water and heat recovery from flue gas[J]. Applied Thermal Engineering, 2021, 186: 116512. |
10 | 曹钦丰, 孟庆莹, 季超, 等. 多孔陶瓷外膜孔径对烟气水热回收性能的影响[J]. 膜科学与技术, 2021, 41(4): 102-109. |
Cao Q F, Meng Q Y, Ji C, et al. Effect of pore size of outer-coated ceramic membranes on water and heat recovery performance in flue gas[J]. Membrane Science and Technology, 2021, 41(4): 102-109. | |
11 | Hu H W, Tang G H, Niu D. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery[J]. Scientific Reports, 2016, 6: 27274. |
12 | Chen H P, Zhou Y N, Su X, et al. Experimental study of water recovery from flue gas using hollow micro-nano porous ceramic composite membranes[J]. Journal of Industrial and Engineering Chemistry, 2018, 57: 349-355. |
13 | Tu T, Cui Q F, Liang F H, et al. Water recovery from stripping gas overhead CO2 desorber through air cooling enhanced by transport membrane condensation[J]. Separation and Purification Technology, 2019, 215: 625-633. |
14 | Wang D X, Bao A N, Kunc W, et al. Coal power plant flue gas waste heat and water recovery[J]. Applied Energy, 2012, 91(1): 341-348. |
15 | Li Z H, Zhang H, Chen H P, et al. Experimental research on the heat transfer and water recovery performance of transport membrane condenser[J]. Applied Thermal Engineering, 2019, 160: 114060. |
16 | Yang B R, Chen H P. Heat and water recovery from flue gas: application of micro-porous ceramic membrane tube bundles in gas-fired power plant[J]. Chemical Engineering and Processing - Process Intensification, 2019, 137: 116-127. |
17 | Wang T T, Yue M W, Qi H, et al. Transport membrane condenser for water and heat recovery from gaseous streams: performance evaluation[J]. Journal of Membrane Science, 2015, 484: 10-17. |
18 | Bao A N, Wang D X, Lin C X. Nanoporous membrane tube condensing heat transfer enhancement study[J]. International Journal of Heat and Mass Transfer, 2015, 84: 456-462. |
19 | Lin C X, Wang D X, Bao A N. Numerical modeling and simulation of condensation heat transfer of a flue gas in a bundle of transport membrane tubes[J]. International Journal of Heat and Mass Transfer, 2013, 60: 41-50. |
20 | Soleimanikutanaei S, Lin C X, Wang D X. Numerical modeling and analysis of transport membrane condensers for waste heat and water recovery from flue gas[J]. International Journal of Thermal Sciences, 2019, 136: 96-106. |
21 | Jia C H, Liu P, Li Z. Performance analysis of ceramic membrane tube modules for water and heat recovery in coal-fired power plants[J]. Journal of Cleaner Production, 2021, 306: 127237. |
22 | Thomson W. On the equilibrium of vapour at a curved surface of liquid[J]. The Philosophical Magazine, 1871, 42(282): 448-452. |
23 | Uchytil P, Petrickovic R, Seidel-Morgenstern A. Study of capillary condensation of butane in a Vycor glass membrane[J]. Journal of Membrane Science, 2005, 264(1/2): 27-36. |
24 | Chen H P, Yang B R. Experiment and simulation method to investigate the flow within porous ceramic membrane[J]. Journal of the Australian Ceramic Society, 2018, 54(3): 575-586. |
25 | Li Z Y, Pan W. Preparation and characterization of nanoporous alumina as ceramic membrane materials[J]. IOP Conference Series: Materials Science and Engineering, 2019, 678(1): 012031. |
26 | Wagner W, Pruß A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use[J]. Journal of Physical and Chemical Reference Data, 2002, 31(2): 387-535. |
27 | Liu X J, Shi Y F, Kalbassi M A, et al. A comprehensive description of water vapor equilibriums on alumina F-200: adsorption, desorption, and H2O/CO2 binary adsorption[J]. Separation and Purification Technology, 2014, 133: 276-281. |
28 | 杨世铭, 陶文铨. 传热学[M]. 3版. 北京: 高等教育出版社, 1998. |
Yang S M, Tao W Q. Heat Transfer[M]. 3rd ed. Beijing: Higher Education Press, 1998. | |
29 | 杨强生. 对流传热与传质[M]. 北京: 高等教育出版社, 1985. |
Yang Q S. Convection Heat Transfer and Mass Transfer[M]. Beijing: Higher Education Press, 1985. | |
30 | Zhou Y N, Chen H P, Xie T, et al. Effect of mass transfer on heat transfer of microporous ceramic membranes for water recovery[J]. International Journal of Heat and Mass Transfer, 2017, 112: 643-648. |
31 | Yue M W, Zhao S F, Feron P H M, et al. Multichannel tubular ceramic membrane for water and heat recovery from waste gas streams[J]. Industrial & Engineering Chemistry Research, 2016, 55(9): 2615-2622. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[3] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[4] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[5] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[6] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[7] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[8] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[9] | Siqi WANG, Tianyu GU, Xianfu CHEN, Tong WANG, Jia LI, Wei KE, Xiaofeng LI, Yiqun FAN. Study on separation characteristics and membrane fouling mechanism of ceramic membrane for clarification of Eucommia ulmoides leaves extract [J]. CIESC Journal, 2023, 74(3): 1113-1125. |
[10] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[11] | Xianfu CHEN, Dongyu WANG, Yiqun FAN, Weihong XING, Xu QIAO. Research progress of porous ceramic membranes based on 3D printing technologies [J]. CIESC Journal, 2023, 74(1): 105-115. |
[12] | Huan ZHOU, Mengli ZHANG, Qing HAO, Si WU, Jie LI, Cunbing XU. Process mechanism and dynamic behaviors of magnesium sulfate type carnallite converting into kainite [J]. CIESC Journal, 2022, 73(9): 3841-3850. |
[13] | Hongchao LIU, Suhang CHEN, Xianli DUAN, Fan WU, Xiaofei XU, Xianyu SONG, Shuangliang ZHAO, Honglai LIU. Transport behavior of Janus graphene quantum dots in biomembrane: a molecular dynamics simulation [J]. CIESC Journal, 2022, 73(7): 2835-2843. |
[14] | Jian CAO, Nannan YE, Guancong JIANG, Yao QIN, Shibo WANG, Jiahua ZHU, Xiaohua LU. Mass transfer resistance analysis of the interaction between porous carbon and hydrogen peroxide based on microcalorimetry [J]. CIESC Journal, 2022, 73(6): 2543-2551. |
[15] | Xue FU, Tingting CHEN, Tingting CHEN, Yingjie XU. Research progress on the conductivity properties of ionic liquids [J]. CIESC Journal, 2022, 73(5): 1883-1893. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||