CIESC Journal ›› 2021, Vol. 72 ›› Issue (7): 3478-3487.DOI: 10.11949/0438-1157.20210253
• Reviews and monographs • Previous Articles Next Articles
WANG Zhi1(),LI Yanqing2,ZHUANG Wei3,CHEN Zhen4,LIU Jinle5,LIU Dong3,ZHAO Anqi2,LYU Yongkun1,XIONG Wenlong1,XU Jingliang1,YING Hanjie3(
)
Received:
2021-02-19
Revised:
2021-04-26
Online:
2021-07-05
Published:
2021-07-05
Contact:
YING Hanjie
王志1(),李彦卿2,庄伟3,陈震4,刘金乐5,柳东3,赵安琪2,吕永坤1,熊文龙1,许敬亮1,应汉杰3(
)
通讯作者:
应汉杰
作者简介:
王志(1992—),男,博士,讲师,基金资助:
CLC Number:
WANG Zhi, LI Yanqing, ZHUANG Wei, CHEN Zhen, LIU Jinle, LIU Dong, ZHAO Anqi, LYU Yongkun, XIONG Wenlong, XU Jingliang, YING Hanjie. Research advances in feed application of polysaccharide trace element complexes[J]. CIESC Journal, 2021, 72(7): 3478-3487.
王志, 李彦卿, 庄伟, 陈震, 刘金乐, 柳东, 赵安琪, 吕永坤, 熊文龙, 许敬亮, 应汉杰. 多糖微量元素络合物的饲料化应用研究进展[J]. 化工学报, 2021, 72(7): 3478-3487.
种类 | 定义 | 实例 |
---|---|---|
特定氨基酸金属络合物 | 由可溶性金属盐与一种特定氨基酸形成的氨基酸金属络合物 | 甘氨酸锌络合物[ |
氨基酸金属络合物 | 由可溶性金属盐与某种或几种氨基酸形成的金属氨基酸络合物 | 复合氨基酸金属络合物[ |
氨基酸金属螯合物 | 由可溶性金属盐与氨基酸按1∶1~1∶3比例以共价键结合而成的氨基酸金属螯合物 | 赖氨酸/谷氨酸铜螯合物[ |
蛋白质金属螯合物 | 由可溶性金属盐与部分水解的蛋白质螯合而成的金属蛋白盐 | 铜螯合肽[ |
多糖金属络合物 | 由可溶性金属盐与多糖溶液形成的多糖金属络合物 | 多糖硒络合物[ |
Table 1 Classification of organic trace elements
种类 | 定义 | 实例 |
---|---|---|
特定氨基酸金属络合物 | 由可溶性金属盐与一种特定氨基酸形成的氨基酸金属络合物 | 甘氨酸锌络合物[ |
氨基酸金属络合物 | 由可溶性金属盐与某种或几种氨基酸形成的金属氨基酸络合物 | 复合氨基酸金属络合物[ |
氨基酸金属螯合物 | 由可溶性金属盐与氨基酸按1∶1~1∶3比例以共价键结合而成的氨基酸金属螯合物 | 赖氨酸/谷氨酸铜螯合物[ |
蛋白质金属螯合物 | 由可溶性金属盐与部分水解的蛋白质螯合而成的金属蛋白盐 | 铜螯合肽[ |
多糖金属络合物 | 由可溶性金属盐与多糖溶液形成的多糖金属络合物 | 多糖硒络合物[ |
微量元素 | 多糖来源 | 微量元素来源 | 络合反应条件 | 微量元素含量/(mg/g) | 文献 |
---|---|---|---|---|---|
铁 | 黄芪 (Astragalus membranaceus) | FeCl3 | 温度:89.46℃; pH:8.16; 时间:0.77 h | 193.2 | [ |
茶 (Camellia sinensis L.) | 温度:60℃; pH:-; 时间:3 h | 146 | [ | ||
大丽花块茎(dahlia tubers) | 温度:25℃; pH:-; 时间:24 h | 175 | [ | ||
北沙参 (Glehniae Radix) | 温度:38℃; pH:9; 时间:3 h | 156.1 | [ | ||
米糠 (rice bran) | 温度:70℃; pH:8~8.5; 时间:至少2 h | 129 | [ | ||
黄豆 (soybean) | 温度:69.8℃; pH:8.89; 时间:- | 306.5 | [ | ||
硒 | 白沙蒿 (Artemisia sphaerocephala Krasch) | H2SeO3 | 温度:70℃; pH:7~8; 时间:6 h | 1.703 | [ |
甘草 (Glycyrrhiza uralensis) | Na2SeO3 | 温度:70℃; pH:5~6; 时间:8 h | 1.339 | [ | |
当归 (angelica) | Na2SeO3 | 温度:70℃; pH:5~6; 时间:8 h | 12.98 | [ | |
锌 | 夏枯草 (Prunella vulgaris) | (CH3COO)2Zn | 温度:40℃; pH:8; 时间:24 h | 27 | [ |
米糠 (rice bran) | ZnSO4 | 温度:70℃; pH:8~8.5; 时间:至少2 h | 4.05 | [ | |
铬 | 苦瓜 (Momordica charantia L.) | CrCl3 | 温度:70℃; pH:8~9; 时间:1 h | 146.8 | [ |
铜 | 米糠 (rice bran) | CuCl2 | 温度:70℃; pH:8~8.5; 时间:至少2 h | 122 | [ |
Table 2 Summary of the plant polysaccharide and trace element complexes
微量元素 | 多糖来源 | 微量元素来源 | 络合反应条件 | 微量元素含量/(mg/g) | 文献 |
---|---|---|---|---|---|
铁 | 黄芪 (Astragalus membranaceus) | FeCl3 | 温度:89.46℃; pH:8.16; 时间:0.77 h | 193.2 | [ |
茶 (Camellia sinensis L.) | 温度:60℃; pH:-; 时间:3 h | 146 | [ | ||
大丽花块茎(dahlia tubers) | 温度:25℃; pH:-; 时间:24 h | 175 | [ | ||
北沙参 (Glehniae Radix) | 温度:38℃; pH:9; 时间:3 h | 156.1 | [ | ||
米糠 (rice bran) | 温度:70℃; pH:8~8.5; 时间:至少2 h | 129 | [ | ||
黄豆 (soybean) | 温度:69.8℃; pH:8.89; 时间:- | 306.5 | [ | ||
硒 | 白沙蒿 (Artemisia sphaerocephala Krasch) | H2SeO3 | 温度:70℃; pH:7~8; 时间:6 h | 1.703 | [ |
甘草 (Glycyrrhiza uralensis) | Na2SeO3 | 温度:70℃; pH:5~6; 时间:8 h | 1.339 | [ | |
当归 (angelica) | Na2SeO3 | 温度:70℃; pH:5~6; 时间:8 h | 12.98 | [ | |
锌 | 夏枯草 (Prunella vulgaris) | (CH3COO)2Zn | 温度:40℃; pH:8; 时间:24 h | 27 | [ |
米糠 (rice bran) | ZnSO4 | 温度:70℃; pH:8~8.5; 时间:至少2 h | 4.05 | [ | |
铬 | 苦瓜 (Momordica charantia L.) | CrCl3 | 温度:70℃; pH:8~9; 时间:1 h | 146.8 | [ |
铜 | 米糠 (rice bran) | CuCl2 | 温度:70℃; pH:8~8.5; 时间:至少2 h | 122 | [ |
微量元素 | 多糖来源 | 微量元素来源 | 络合方式 | 微量元素含量/(mg/g) | 文献 |
---|---|---|---|---|---|
硒 | 乳酸菌(Lactococcus lactis subsp. lactis) | SeCl2O | 体外 | 0.17 | [ |
根瘤菌(Rhizobium sp. N613) | H2SeO3 | 体外 | 0.79 | [ | |
粒毛盘菌(Lachnum sp.) | Na2SeO3 | 体外 | 3.6 | [ | |
芽孢杆菌(Bacillus Paralicheniformis SR14) | Na2SeO3 | 体内 | 3.6 | [ | |
猴头菇(Hericium erinaceum) | Selol | 体内 | 4.89 | [ | |
锌 | 滑菇(Pholiota nameko SW-O2) | ZnSO4 | 体内 | 16.68 | [ |
铁 | 肠杆菌(Enterobacter sp. Mediated) | FeC | 体内 | 431 | [ |
桦褐孔菌(Inonotus obliquus) | FeCl3 | 体外 | 194 | [ | |
金针菇(Flammulina velutipes) | FeCl3 | 体外 | 117 | [ | |
铜 | 出芽短梗霉菌(Aureobasidium pullulans) | CuCl2 | 体外 | — | [ |
Table 3 Summary of the microbial polysaccharide and trace element complexes
微量元素 | 多糖来源 | 微量元素来源 | 络合方式 | 微量元素含量/(mg/g) | 文献 |
---|---|---|---|---|---|
硒 | 乳酸菌(Lactococcus lactis subsp. lactis) | SeCl2O | 体外 | 0.17 | [ |
根瘤菌(Rhizobium sp. N613) | H2SeO3 | 体外 | 0.79 | [ | |
粒毛盘菌(Lachnum sp.) | Na2SeO3 | 体外 | 3.6 | [ | |
芽孢杆菌(Bacillus Paralicheniformis SR14) | Na2SeO3 | 体内 | 3.6 | [ | |
猴头菇(Hericium erinaceum) | Selol | 体内 | 4.89 | [ | |
锌 | 滑菇(Pholiota nameko SW-O2) | ZnSO4 | 体内 | 16.68 | [ |
铁 | 肠杆菌(Enterobacter sp. Mediated) | FeC | 体内 | 431 | [ |
桦褐孔菌(Inonotus obliquus) | FeCl3 | 体外 | 194 | [ | |
金针菇(Flammulina velutipes) | FeCl3 | 体外 | 117 | [ | |
铜 | 出芽短梗霉菌(Aureobasidium pullulans) | CuCl2 | 体外 | — | [ |
1 | Mohammadifard N, Humphries K H, Gotay C, et al. Trace minerals intake: risks and benefits for cardiovascular health[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(8): 1334-1346. |
2 | Carpenè E, Andreani G, Isani G. Trace elements in unconventional animals: a 40-year experience[J]. Journal of Trace Elements in Medicine and Biology, 2017, 43: 169-179. |
3 | Papp L V, Lu J, Holmgren A, et al. From selenium to selenoproteins: synthesis, identity, and their role in human health[J]. Antioxidants & Redox Signaling, 2007, 9(7): 775-806. |
4 | López-Alonso M. Trace minerals and livestock: not too much not too little[J]. ISRN Vet. Sci., 2012, 2012: 704825. |
5 | Yan J K, Qiu W Y, Wang Y Y, et al. Fabrication and stabilization of biocompatible selenium nanoparticles by carboxylic curdlans with various molecular properties[J]. Carbohydrate Polymers, 2018, 179: 19-27. |
6 | Baran E J. Trace elements supplementation: recent advances and perspectives[J]. Mini Reviews in Medicinal Chemistry, 2004, 4(1): 1-9. |
7 | Zhao J M, Shirley R B, Dibner J J, et al. Superior growth performance in broiler chicks fed chelated compared to inorganic zinc in presence of elevated dietary copper[J]. Journal of Animal Science and Biotechnology, 2016, 7(1): 1-9. |
8 | Low B W, Hirshfeld F L, Richards F M. Glycinate complexes of zinc and cadmium[J]. Journal of the American Chemical Society, 1959, 81(16): 4412-4416. |
9 | Yu B, Huang W J, Chiou P W S. Bioavailability of iron from amino acid complex in weanling pigs[J]. Animal Feed Science and Technology, 2000, 86(1/2): 39-52. |
10 | Gawargious Y A, Besada A, Hassouna M E M. Micro determination of α-amino-acids through chelation with copper and titration with EDTA[J]. Microchimica Acta, 1974, 62(1): 45-50. |
11 | Liao P, Shu X G, Tang M, et al. Effect of dietary copper source (inorganic vs. chelated) on immune response, mineral status, and fecal mineral excretion in nursery piglets[J]. Food and Agricultural Immunology, 2018, 29(1): 548-563. |
12 | Megías C, Pedroche J, Yust M M, et al. Production of copper-chelating peptides after hydrolysis of sunflower proteins with pepsin and pancreatin[J]. LWT - Food Science and Technology, 2008, 41(10): 1973-1977. |
13 | Lu Q, Xu L, Meng Y B, et al. Preparation and characterization of a novel Astragalus membranaceus polysaccharide-iron (Ⅲ) complex[J]. International Journal of Biological Macromolecules, 2016, 93: 208-216. |
14 | Pino F, Urrutia N L, Gelsinger S L, et al. Long-term effect of organic trace minerals on growth, reproductive performance, and first lactation in dairy heifers[J]. The Professional Animal Scientist, 2018, 34(1): 51-58. |
15 | Lu L, Liao X D, Luo X G. Nutritional strategies for reducing nitrogen, phosphorus and trace mineral excretions of livestock and poultry[J]. Journal of Integrative Agriculture, 2017, 16(12): 2815-2833. |
16 | Gelsinger S L, Pino F, Jones C M, et al. Effects of a dietary organic mineral program including mannan oligosaccharides for pregnant cattle and their calves on calf health and performance[J]. The Professional Animal Scientist, 2016, 32(2): 205-213. |
17 | Okutni K. Antitumor and immunostimulant activities of polysaccharide produced by a marine bacterium of the genus Vibrio[J]. Nippon Suisan Gakkaishi, 1984, 50(6): 1035-1037. |
18 | Raveendran S, Poulose A C, Yoshida Y, et al. Bacterial exopolysaccharide based nanoparticles for sustained drug delivery, cancer chemotherapy and bioimaging[J]. Carbohydrate Polymers, 2013, 91(1): 22-32. |
19 | Sun M L, Liu S B, Qiao L P, et al. A novel exopolysaccharide from deep-sea bacterium Zunongwangia profunda SM-A87: low-cost fermentation, moisture retention, and antioxidant activities[J]. Applied Microbiology and Biotechnology, 2014, 98(17): 7437-7445. |
20 | López E, Ramos I, Sanromán M A. Extracellular polysaccharides production by Arthrobacter viscosus[J]. Journal of Food Engineering, 2003, 60(4): 463-467. |
21 | Li J, Shen B X, Nie S L, et al. A combination of selenium and polysaccharides: promising therapeutic potential[J]. Carbohydrate Polymers, 2019, 206: 163-173. |
22 | Andrieu S. Is there a role for organic trace element supplements in transition cow health?[J]. The Veterinary Journal, 2008, 176(1): 77-83. |
23 | Truccolo M M. Swine supplementation with zinc and copper : a review about organic minerals as a solution for environmental contamination[C]//47th Croatian and 7th International Symposium on Argiculture. Opatija, Croatia, 2012: 741-744. |
24 | Wang X H, Du Y M, Fan L H, et al. Chitosan-metal complexes as antimicrobial agent: synthesis, characterization and structure-activity study[J]. Polymer Bulletin, 2005, 55(1/2): 105-113. |
25 | Zhang Y S, Zhang Z M, Liu H, et al. Physicochemical characterization and antitumor activity in vitro of a selenium polysaccharide from Pleurotus ostreatus[J]. International Journal of Biological Macromolecules, 2020, 165: 2934-2946. |
26 | Sheng Y, Liu G C, Wang M L, et al. A selenium polysaccharide from Platycodon grandiflorum rescues PC12 cell death caused by H2O2via inhibiting oxidative stress[J]. International Journal of Biological Macromolecules, 2017, 104: 393-399. |
27 | Liu L, Pan D D, Zeng X Q, et al. Effect of selenium-enriched exopolysaccharide produced by Lactococcus lactis subsp. lactis on signaling molecules in mouse spleen lymphocytes[J]. Food & Function, 2013, 4(10): 1489-1495. |
28 | Krzesłowska M. The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy[J]. Acta Physiologiae Plantarum, 2011, 33(1): 35-51. |
29 | Zhou N, Long H R, Wang C H, et al. Characterization of selenium-containing polysaccharide from Spirulina platensis and its protective role against Cd-induced toxicity[J]. International Journal of Biological Macromolecules, 2020, 164: 2465-2476. |
30 | Zhu Z Y, Liu F, Gao H, et al. Synthesis, characterization and antioxidant activity of selenium polysaccharide from Cordyceps militaris[J]. International Journal of Biological Macromolecules, 2016, 93: 1090-1099. |
31 | Yang W J, Huang G L, Huang H L. Preparation and structure of polysaccharide selenide[J]. Industrial Crops and Products, 2020, 154: 112630. |
32 | Surai P. Strategies to enhance antioxidant protection and implications for the wellbeing of companion animals[M]//Lyons T P, Jacques K A. Nutritional Biotechnology in the Feed and Food Industries. UK: Nottingham University Press, 2002. |
33 | Bakshi P S, Selvakumar D, Kadirvelu K, et al. Chitosan as an environment friendly biomaterial - a review on recent modifications and applications[J]. International Journal of Biological Macromolecules, 2020, 150: 1072-1083. |
34 | Wang X H, Du Y M, Liu H. Preparation, characterization and antimicrobial activity of chitosan-Zn complex[J]. Carbohydrate Polymers, 2004, 56(1): 21-26. |
35 | Vieira R S, Oliveira M L M, Guibal E, et al. Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: an XPS investigation of mechanism[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 374(1/2/3): 108-114. |
36 | Xu X, Shan B, Liao C H, et al. Anti-diabetic properties of Momordica charantia L. polysaccharide in alloxan-induced diabetic mice[J]. International Journal of Biological Macromolecules, 2015, 81: 538-543. |
37 | Jiao R, Liu Y, Gao H, et al. The anti-oxidant and antitumor properties of plant polysaccharides[J]. The American Journal of Chinese Medicine, 2016, 44(3): 463-488. |
38 | Li L L, Yin F G, Zhang B, et al. Dietary supplementation with Atractylodes macrophala Koidz polysaccharides ameliorate metabolic status and improve immune function in early-weaned pigs[J]. Livestock Science, 2011, 142(1/2/3): 33-41. |
39 | Chen Q H, Liu Z Y, He J H, et al. Achyranthes bidentata polysaccharide enhances growth performance and health status in weaned piglets[J]. Food and Agricultural Immunology, 2011, 22(1): 17-29. |
40 | Tang M M, Wang D F, Hou Y F, et al. Preparation, characterization, bioavailability in vitro and in vivo of tea polysaccharides-iron complex[J]. European Food Research and Technology, 2013, 236(2): 341-350. |
41 | Pitarresi G, Tripodo G, Cavallaro G, et al. Inulin-iron complexes: a potential treatment of iron deficiency anaemia[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68(2): 267-276. |
42 | Jing Y S, Zhang R J, Wu L F, et al. Structural characteristics and antioxidant activity of polysaccharide-iron complex from Glehniae Radix[J]. International Journal of Food Properties, 2020, 23(1): 894-907. |
43 | Pan X H, Wu S H, Yan Y J, et al. Rice bran polysaccharide-metal complexes showed safe antioxidant activity in vitro[J]. International Journal of Biological Macromolecules, 2019, 126: 934-940. |
44 | Gao W H, Jiang L Y, Wan Z Z, et al. Antibacterial and probiotic promotion potential of a new soluble soybean polysaccharide‑iron(Ⅲ) complex[J]. International Journal of Biological Macromolecules, 2020, 163: 2306-2313. |
45 | Wang J L, Zhao B T, Wang X F, et al. Synthesis of selenium-containing polysaccharides and evaluation of antioxidant activity in vitro[J]. International Journal of Biological Macromolecules, 2012, 51(5): 987-991. |
46 | Lian K X, Zhu X Q, Chen J, et al. Selenylation modification: enhancement of the antioxidant activity of a Glycyrrhiza uralensis polysaccharide[J]. Glycoconjugate Journal, 2018, 35(2): 243-253. |
47 | Qin T, Chen J, Wang D Y, et al. Optimization of selenylation conditions for Chinese angelica polysaccharide based on immune-enhancing activity[J]. Carbohydrate Polymers, 2013, 92(1): 645-650. |
48 | Li C, Huang Q, Xiao J, et al. Preparation of Prunella vulgaris polysaccharide-zinc complex and its antiproliferative activity in HepG2 cells[J]. International Journal of Biological Macromolecules, 2016, 91: 671-679. |
49 | Zhang C, Huang M, Hong R, et al. Preparation of a Momordica charantia L. polysaccharide‑chromium (Ⅲ) complex and its anti-hyperglycemic activity in mice with streptozotocin-induced diabetes[J]. International Journal of Biological Macromolecules, 2019, 122: 619-627. |
50 | Yang Y, Ji J, Di L Q, et al. Resource, chemical structure and activity of natural polysaccharides against alcoholic liver damages[J]. Carbohydrate Polymers, 2020, 241: 116355. |
51 | Mohamed S, Hashim S N, Rahman H A. Seaweeds: a sustainable functional food for complementary and alternative therapy[J]. Trends in Food Science & Technology, 2012, 23(2): 83-96. |
52 | Zhuang C, Itoh H, Mizuno T, et al. Antitumor active fucoidan from the brown seaweed, umitoranoo (Sargassum thunbergii)[J]. Bioscience, Biotechnology, and Biochemistry, 1995, 59(4): 563-567. |
53 | Fabregas J, Garcı́a D, Fernandez-Alonso M, et al. In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae[J]. Antiviral Research, 1999, 44(1): 67-73. |
54 | Rao P S, Parekh K S. Antibacterial activity of Indian seaweed extracts[J]. Botanica Marina, 1981, 24(11): 577-582. |
55 | Chotigeat W, Tongsupa S, Supamataya K, et al. Effect of fucoidan on disease resistance of black tiger shrimp[J]. Aquaculture, 2004, 233(1/2/3/4): 23-30. |
56 | Lü H, Gao Y J, Shan H, et al. Preparation and antibacterial activity studies of degraded polysaccharide selenide from Enteromorpha prolifera[J]. Carbohydrate Polymers, 2014, 107: 98-102. |
57 | 单俊伟, 台文静, 王海华, 等. 一种海藻多糖铜络合物的制备方法: 106496347A[P]. 2017-03-15. |
Shan J W, Tai W J, Wang H H, et al. Preparation method of seaweed polysaccharide copper complex: 106496347A[P]. 2017-03-15. | |
58 | Wang J, Chen H X, Wang Y W, et al. Synthesis and characterization of a new Inonotus obliquus polysaccharide-iron(Ⅲ) complex[J]. International Journal of Biological Macromolecules, 2015, 75: 210-217. |
59 | Shen W Z, Wang H, Guo G Q, et al. Immunomodulatory effects of Caulerpa racemosa var peltata polysaccharide and its selenizing product on T lymphocytes and NK cells in mice[J]. Science in China Series C: Life Sciences, 2008, 51(9): 795-801. |
60 | Guo Y X, Pan D D, Li H, et al. Antioxidant and immunomodulatory activity of selenium exopolysaccharide produced by Lactococcus lactis subsp. lactis[J]. Food Chemistry, 2013, 138(1): 84-89. |
61 | Ding G B, Nie R H, Lv L H, et al. Preparation and biological evaluation of a novel selenium-containing exopolysaccharide from Rhizobium sp. N613[J]. Carbohydrate Polymers, 2014, 109: 28-34. |
62 | Surhio M M, Wang Y F, Xu P, et al. Antihyperlipidemic and hepatoprotective properties of selenium modified polysaccharide from Lachnum sp.[J]. International Journal of Biological Macromolecules, 2017, 99: 88-95. |
63 | Cheng Y Z, Xiao X, Li X X, et al. Characterization, antioxidant property and cytoprotection of exopolysaccharide-capped elemental selenium particles synthesized by Bacillus paralicheniformis SR14[J]. Carbohydrate Polymers, 2017, 178: 18-26. |
64 | Malinowska E, Krzyczkowski W, Herold F, et al. Biosynthesis of selenium-containing polysaccharides with antioxidant activity in liquid culture of Hericium erinaceum[J]. Enzyme and Microbial Technology, 2009, 44(5): 334-343. |
65 | Zheng L, Zhai G Y, Zhang J J, et al. Antihyperlipidemic and hepatoprotective activities of mycelia zinc polysaccharide from Pholiota nameko SW-02[J]. International Journal of Biological Macromolecules, 2014, 70: 523-529. |
66 | Kianpour S, Ebrahiminezhad A, Heidari R, et al. Enterobacter sp. mediated synthesis of biocompatible nanostructured iron-polysaccharide complexes: a nutritional supplement for iron-deficiency anemia[J]. Biological Trace Element Research, 2020, 198(2): 744-755. |
67 | Cheng C, Huang D C, Zhao L Y, et al. Preparation and in vitro absorption studies of a novel polysaccharide‑iron (Ⅲ) complex from Flammulina velutipes[J]. International Journal of Biological Macromolecules, 2019, 132: 801-810. |
68 | Mitić Ž, Nikolić G S, Cakić M, et al. FTIR spectroscopic characterization of Cu(Ⅱ) coordination compounds with exopolysaccharide pullulan and its derivatives[J]. Journal of Molecular Structure, 2009, 924/925/926: 264-273. |
69 | Jin M L, Lu Z Q, Huang M, et al. Effects of Se-enriched polysaccharides produced by Enterobacter cloacae Z0206 on alloxan-induced diabetic mice[J]. International Journal of Biological Macromolecules, 2012, 50(2): 348-352. |
70 | Zhang B W, Zhou K, Zhang J L, et al. Accumulation and species distribution of selenium in Se-enriched bacterial cells of the Bifidobacterium animalis 01[J]. Food Chemistry, 2009, 115(2): 727-734. |
71 | Kumar A S, Mody K, Jha B. Bacterial exopolysaccharides: a perception[J]. Journal of Basic Microbiology, 2007, 47(2): 103-117. |
72 | Chen L, Huang G L. The antiviral activity of polysaccharides and their derivatives[J]. International Journal of Biological Macromolecules, 2018, 115: 77-82. |
73 | Xu C L, Wang Y Z, Jin M L, et al. Preparation, characterization and immunomodulatory activity of selenium-enriched exopolysaccharide produced by bacterium Enterobacter cloacae Z0206[J]. Bioresource Technology, 2009, 100(6): 2095-2097. |
74 | Xu L, Meng Y B, Liu Y, et al. A novel iron supplements preparation from Grifola frondosa polysaccharide and assessment of antioxidant, lymphocyte proliferation and complement fixing activities[J]. International Journal of Biological Macromolecules, 2018, 108: 1148-1157. |
75 | Shang D, Li Y, Wang C, et al. A novel polysaccharide from Se-enriched Ganoderma lucidum induces apoptosis of human breast cancer cells[J]. Oncology Reports, 2011, 25(1): 267-272. |
76 | Drouin P, Tremblay J, Chaucheyras-Durand F. Dynamic succession of microbiota during ensiling of whole plant corn following inoculation with Lactobacillus buchneri and Lactobacillus hilgardii alone or in combination[J]. Microorganisms, 2019, 7(12): E595. |
77 | Ma Y F, Huang Q C, Lv M, et al. Chitosan-Zn chelate increases antioxidant enzyme activity and improves immune function in weaned piglets[J]. Biological Trace Element Research, 2014, 158(1): 45-50. |
78 | Banadaky M D, Rajaei-Sharifabadi H, Hafizi M, et al. Lactation responses of Holstein dairy cows to supplementation with a combination of trace minerals produced using the advanced chelate compounds technology[J]. Tropical Animal Health and Production, 2021, 53(1): 1-9. |
79 | Seyfori H, Ghasemi H A, Hajkhodadadi I, et al. Effects of water supplementation of anorganic acid-trace mineral complex on production and slaughter parameters, intestinal histomorphology, and macronutrient digestibility in growing ostriches[J]. Poultry Science, 2019, 98(10): 4860-4867. |
80 | Harvey K M, Cooke R F, Colombo E A, et al. Supplementing organic-complexed or inorganic Co, Cu, Mn, and Zn to beef cows during gestation: post-weaning responses of offspring reared as replacement heifers or feeder cattle[J]. Journal of Animal Science, 2021, 99(6): skab082. |
81 | Marques R S, Cooke R F, Rodrigues M C, et al. Effects of organic or inorganic cobalt, copper, manganese, and zinc supplementation to late-gestating beef cows on productive and physiological responses of the offspring[J]. Journal of Animal Science, 2016, 94(3): 1215-1226. |
82 | Echeverry H, Yitbarek A, Munyaka P, et al. Organic trace mineral supplementation enhances local and systemic innate immune responses and modulates oxidative stress in broiler chickens[J]. Poultry Science, 2016, 95(3): 518-527. |
83 |
Zhou W T, Miao S S, Zhu M K, et al. Effect of glycine nano-selenium supplementation on production performance, egg quality, serum biochemistry, oxidative status, and the intestinal morphology and absorption of laying hens[J]. Biological Trace Element Research, 2021, doi:10.1007/S12011-020-02532-X.
DOI |
84 | Wang Z C, Yu H M, Wu X Z, et al. Effects of dietary zinc pectin oligosaccharides chelate supplementation on growth performance, nutrient digestibility and tissue zinc concentrations of broilers[J]. Biological Trace Element Research, 2016, 173(2): 475-482. |
85 | Williams H E, DeRouchey J M, Woodworth J C, et al. Effects of increasing Fe dosage in newborn pigs on suckling and subsequent nursery performance and hematological and immunological criteria[J]. Journal of Animal Science, 2020, 98(8): skaa221. |
86 | Williams H E, Carrender B, Roubicek C D, et al. Effects of iron injection timing on suckling and subsequent nursery and growing-finishing performance and hematological criteria[J]. Journal of Animal Science, 2021, 99(3): skab071. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[3] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[4] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[5] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[6] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[7] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[8] | Feng WANG, Yu CHEN, Hongyan PEI, Dongdong LIU, Jing ZHANG, Lixin ZHANG. Design, synthesis and anti-fungal activity of 1,2,4-oxadiazole derivatives [J]. CIESC Journal, 2023, 74(3): 1390-1398. |
[9] | Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers [J]. CIESC Journal, 2023, 74(2): 796-806. |
[10] | Mengbo ZHANG, Linjin LOU, Yirong FENG, Yuting ZHENG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on synthesis of alkylaluminoxanes [J]. CIESC Journal, 2023, 74(2): 525-534. |
[11] | Guojia YU, Dongyu JIN, Zhiyong ZHOU, Fan ZHANG, Zhongqi REN. Advances in the design, synthesis and application of porous liquids [J]. CIESC Journal, 2023, 74(1): 257-275. |
[12] | Qiuhua ZHANG, Manlu LIU, Zheng WANG, Yiming ZHANG, Haijia SU. Biosynthesis of vitamin K2 and functional analysis of the biosynthetic enzymes involved in its menadione moiety [J]. CIESC Journal, 2023, 74(1): 342-354. |
[13] | Xiaobing JU, Xuechun LI, Fang SUN. Effect on dithiosalicylic acid derivative on properties of photocuring materials [J]. CIESC Journal, 2022, 73(9): 4187-4193. |
[14] | Jingwei ZHANG, Yiwei ZHOU, Zhuo CHEN, Jianhong XU. Advances in frontiers of organic synthesis in microreactor [J]. CIESC Journal, 2022, 73(8): 3472-3482. |
[15] | Wenhua DAI, Zhong XIN. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2022, 73(8): 3586-3596. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 571
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||