CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 830-842.DOI: 10.11949/0438-1157.20221299
• Energy and environmental engineering • Previous Articles Next Articles
Jiahao JIANG1(), Xiaole HUANG1, Jiyun REN1, Zhengrong ZHU2, Lei DENG1(), Defu CHE1
Received:
2022-09-27
Revised:
2022-12-07
Online:
2023-03-21
Published:
2023-02-05
Contact:
Lei DENG
姜家豪1(), 黄笑乐1, 任纪云1, 朱正荣2, 邓磊1(), 车得福1
通讯作者:
邓磊
作者简介:
姜家豪(1996—),男,博士研究生,Jiangjh@stu.xjtu.edu.cn
基金资助:
CLC Number:
Jiahao JIANG, Xiaole HUANG, Jiyun REN, Zhengrong ZHU, Lei DENG, Defu CHE. Qualitative and quantitative study on Pb2+ adsorption by biochar in solution[J]. CIESC Journal, 2023, 74(2): 830-842.
姜家豪, 黄笑乐, 任纪云, 朱正荣, 邓磊, 车得福. 生物炭吸附溶液中Pb2+的定性及定量研究[J]. 化工学报, 2023, 74(2): 830-842.
Add to citation manager EndNote|Ris|BibTeX
生物炭 | 总酸性官能团含量/ (mmol∙g-1) | pH | 灰分/ % | 比表面积/ (m2∙g-1) | 孔容积/ (cm3∙g-1) | 产率/ % | 元素分析/% | C/H | C/N | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | H | N | S | |||||||||
SBC400 | 1.01 | 9.54 | 12.80 | 5.59 | 0.0098 | 33.5 | 67.44 | 2.648 | 1.28 | 0.662 | 25.46 | 52.72 |
SBC600 | 0.40 | 10.39 | 17.04 | 28.93 | 0.0184 | 25.3 | 70.01 | 1.557 | 1.10 | 0.272 | 44.97 | 63.68 |
SBC800 | 0.33 | 10.76 | 17.88 | 86.33 | 0.0498 | 23.1 | 70.55 | 1.064 | 1.16 | 0.415 | 66.28 | 60.75 |
PBC400 | 1.15 | 7.45 | 0.34 | 53.84 | 0.0357 | 28.5 | 80.99 | 2.762 | 0.36 | 0.221 | 29.33 | 226.60 |
PBC600 | 1.00 | 8.75 | 0.40 | 411.84 | 0.1807 | 19.5 | 88.54 | 1.277 | 0.51 | 0.310 | 69.31 | 173.95 |
PBC800 | 0.77 | 10.02 | 0.47 | 440.52 | 0.2003 | 15.4 | 89.74 | 0.597 | 0.65 | 0.192 | 150.32 | 138.60 |
Table 1 Characterization of biochar (total acidity, pH, ash, surface area, yield, elemental analysis(dry basis))
生物炭 | 总酸性官能团含量/ (mmol∙g-1) | pH | 灰分/ % | 比表面积/ (m2∙g-1) | 孔容积/ (cm3∙g-1) | 产率/ % | 元素分析/% | C/H | C/N | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | H | N | S | |||||||||
SBC400 | 1.01 | 9.54 | 12.80 | 5.59 | 0.0098 | 33.5 | 67.44 | 2.648 | 1.28 | 0.662 | 25.46 | 52.72 |
SBC600 | 0.40 | 10.39 | 17.04 | 28.93 | 0.0184 | 25.3 | 70.01 | 1.557 | 1.10 | 0.272 | 44.97 | 63.68 |
SBC800 | 0.33 | 10.76 | 17.88 | 86.33 | 0.0498 | 23.1 | 70.55 | 1.064 | 1.16 | 0.415 | 66.28 | 60.75 |
PBC400 | 1.15 | 7.45 | 0.34 | 53.84 | 0.0357 | 28.5 | 80.99 | 2.762 | 0.36 | 0.221 | 29.33 | 226.60 |
PBC600 | 1.00 | 8.75 | 0.40 | 411.84 | 0.1807 | 19.5 | 88.54 | 1.277 | 0.51 | 0.310 | 69.31 | 173.95 |
PBC800 | 0.77 | 10.02 | 0.47 | 440.52 | 0.2003 | 15.4 | 89.74 | 0.597 | 0.65 | 0.192 | 150.32 | 138.60 |
Char | Q/(mg∙g-1) | Pseudo-first-order model | Pseudo-second-order model | ||||
---|---|---|---|---|---|---|---|
qe/(mg∙g-1) | k1/ h-1 | R2 | qe/(mg∙g-1) | k2/(g∙mg-1∙h-1) | R2 | ||
SBC400 | 206.22 | 195.57 | 0.394 | 0.976 | 218.79 | 0.002 | 0.994 |
SBC600 | 176.30 | 160.72 | 2.989 | 0.696 | 166.84 | 0.031 | 0.879 |
SBC800 | 227.24 | 205.65 | 2.699 | 0.583 | 213.94 | 0.021 | 0.861 |
PBC400 | 4.50 | 3.57 | 2.301 | 0.728 | 3.76 | 0.887 | 0.839 |
PBC600 | 12.26 | 11.67 | 1.275 | 0.891 | 12.34 | 0.151 | 0.939 |
PBC800 | 22.60 | 21.55 | 0.930 | 0.876 | 23.01 | 0.057 | 0.933 |
Table 2 Kinetic parameters of the pseudo-first-order and pseudo-second-order model for Pb2+ adsorption onto different chars
Char | Q/(mg∙g-1) | Pseudo-first-order model | Pseudo-second-order model | ||||
---|---|---|---|---|---|---|---|
qe/(mg∙g-1) | k1/ h-1 | R2 | qe/(mg∙g-1) | k2/(g∙mg-1∙h-1) | R2 | ||
SBC400 | 206.22 | 195.57 | 0.394 | 0.976 | 218.79 | 0.002 | 0.994 |
SBC600 | 176.30 | 160.72 | 2.989 | 0.696 | 166.84 | 0.031 | 0.879 |
SBC800 | 227.24 | 205.65 | 2.699 | 0.583 | 213.94 | 0.021 | 0.861 |
PBC400 | 4.50 | 3.57 | 2.301 | 0.728 | 3.76 | 0.887 | 0.839 |
PBC600 | 12.26 | 11.67 | 1.275 | 0.891 | 12.34 | 0.151 | 0.939 |
PBC800 | 22.60 | 21.55 | 0.930 | 0.876 | 23.01 | 0.057 | 0.933 |
Char | Q/(mg∙g-1) | Langmuir model | Freundlich model | ||||
---|---|---|---|---|---|---|---|
qm/(mg∙g-1) | KL/(L∙mg-1) | R2 | n | KF/(mg1-n ∙L n ∙g-1) | R2 | ||
SBC400 | 206.22 | 209.35 | 3.939 | 0.994 | 0.124 | 91.49 | 0.797 |
SBC600 | 176.30 | 180.62 | 2.029 | 0.999 | 0.122 | 78.99 | 0.771 |
SBC800 | 227.24 | 226.64 | 2.438 | 0.898 | 0.117 | 100.32 | 0.665 |
PBC400 | 4.54 | 4.62 | 2.640 | 0.901 | 0.052 | 3.47 | 0.684 |
PBC600 | 12.26 | 12.02 | 0.907 | 0.930 | 0.107 | 6.52 | 0.809 |
PBC800 | 22.60 | 23.47 | 1.779 | 0.967 | 0.104 | 12.59 | 0.712 |
Table 3 Adsorption isotherms parameters of Langmuir and Freundlich model for Pb2+ adsorption onto different chars
Char | Q/(mg∙g-1) | Langmuir model | Freundlich model | ||||
---|---|---|---|---|---|---|---|
qm/(mg∙g-1) | KL/(L∙mg-1) | R2 | n | KF/(mg1-n ∙L n ∙g-1) | R2 | ||
SBC400 | 206.22 | 209.35 | 3.939 | 0.994 | 0.124 | 91.49 | 0.797 |
SBC600 | 176.30 | 180.62 | 2.029 | 0.999 | 0.122 | 78.99 | 0.771 |
SBC800 | 227.24 | 226.64 | 2.438 | 0.898 | 0.117 | 100.32 | 0.665 |
PBC400 | 4.54 | 4.62 | 2.640 | 0.901 | 0.052 | 3.47 | 0.684 |
PBC600 | 12.26 | 12.02 | 0.907 | 0.930 | 0.107 | 6.52 | 0.809 |
PBC800 | 22.60 | 23.47 | 1.779 | 0.967 | 0.104 | 12.59 | 0.712 |
生物炭 | 区域编号 | EDS扫描的元素分布/% (mass) | |||||||
---|---|---|---|---|---|---|---|---|---|
C | O | Mg | Al | Si | K | Ca | Pb | ||
PBC800 | 1 | 96.44 | 2.92 | 0.29 | 0.35 | ||||
2 | 96.21 | 3.13 | 0.39 | 0.27 | |||||
SBC400 | 3 | 76.26 | 13.66 | 0.44 | 5.68 | 2.01 | |||
4 | 77.84 | 13.07 | 0.94 | 6.59 | 1.23 | ||||
SBC800 | 5 | 62.38 | 14.80 | 2.01 | 14.26 | 5.03 | |||
6 | 64.48 | 20.30 | 1.52 | 5.23 | 6.55 | ||||
PBC800+Pb | 7 | 95.32 | 3.08 | 0.60 | |||||
8 | 97.18 | 2.82 | |||||||
SBC400+Pb | 9 | 75.90 | 14.06 | 10.04 | |||||
10 | 76.85 | 12.87 | 10.28 | ||||||
SBC800+Pb | 11 | 56.12 | 14.06 | 2.99 | 0.81 | 1.53 | 24.49 | ||
12 | 69.49 | 16.10 | 1.82 | 0.75 | 1.86 | 1.22 | 1.10 | 7.67 | |
13 | 69.95 | 17.72 | 2.16 | 0.73 | 9.43 |
Table 4 EDS results of biochar
生物炭 | 区域编号 | EDS扫描的元素分布/% (mass) | |||||||
---|---|---|---|---|---|---|---|---|---|
C | O | Mg | Al | Si | K | Ca | Pb | ||
PBC800 | 1 | 96.44 | 2.92 | 0.29 | 0.35 | ||||
2 | 96.21 | 3.13 | 0.39 | 0.27 | |||||
SBC400 | 3 | 76.26 | 13.66 | 0.44 | 5.68 | 2.01 | |||
4 | 77.84 | 13.07 | 0.94 | 6.59 | 1.23 | ||||
SBC800 | 5 | 62.38 | 14.80 | 2.01 | 14.26 | 5.03 | |||
6 | 64.48 | 20.30 | 1.52 | 5.23 | 6.55 | ||||
PBC800+Pb | 7 | 95.32 | 3.08 | 0.60 | |||||
8 | 97.18 | 2.82 | |||||||
SBC400+Pb | 9 | 75.90 | 14.06 | 10.04 | |||||
10 | 76.85 | 12.87 | 10.28 | ||||||
SBC800+Pb | 11 | 56.12 | 14.06 | 2.99 | 0.81 | 1.53 | 24.49 | ||
12 | 69.49 | 16.10 | 1.82 | 0.75 | 1.86 | 1.22 | 1.10 | 7.67 | |
13 | 69.95 | 17.72 | 2.16 | 0.73 | 9.43 |
1 | 王思远, 杨树俊, 张贺, 等. 土壤中铅污染来源及其危害综述[J]. 农业与技术, 2022, 42(9): 78-81. |
Wang S Y, Yang S J, Zhang H, et al. Source and harm of lead pollution in soil[J]. Agriculture and Technology, 2022, 42(9): 78-81. | |
2 | Zhang J Q, Hu X L, Zhang K J, et al. Desorption of calcium-rich crayfish shell biochar for the removal of lead from aqueous solutions[J]. Journal of Colloid and Interface Science, 2019, 554: 417-423. |
3 | 刘国成. 生物炭对水体和土壤环境中重金属铅的固持[D]. 青岛: 中国海洋大学, 2014. |
Liu G C. Immobilization of Pb2+ in contaminated waters and soils by biohcars[D]. Qingdao: Ocean University of China, 2014. | |
4 | 吕玉桦. 我国儿童血铅水平现状及对策研究[D]. 衡阳: 南华大学, 2014. |
Lyu Y H. A study of current situations and countermeasures on blood lead level of children in China[D]. Hengyang: University of South China, 2014. | |
5 | 高凤凤. 低维碳基电控离子选择渗透膜的制备及重金属离子分离[D]. 太原: 太原理工大学, 2017. |
Gao F F. Preparation of low-dimensional carbon-based eletrochemically switched ion permselectivity membrane and separation of heavy metal ion[D]. Taiyuan: Taiyuan University of Technology, 2017. | |
6 | 杨立鹏. 中和沉淀-Fenton混凝处理蓄电池生产废水工艺及机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. |
Yang L P. Study on the process and mechanism of storage battery wastewater treatment[D]. Harbin: Harbin Institute of Technology, 2010. | |
7 | 杨海, 黄新, 林子增, 等. 离子交换法处理重金属废水的研究进展[J]. 应用化工, 2019, 48(7): 1675-1680. |
Yang H, Huang X, Lin Z Z, et al. Research progress in the treatment of heavy metal wastewater by ion exchange[J]. Applied Chemical Industry, 2019, 48(7): 1675-1680. | |
8 | 桂珊, 刘贡钢, 姜珩, 等. 新型多胺羧甲基壳聚糖的合成及对Ni(Ⅱ)的吸附特性[J]. 化工学报, 2015, 66(5): 1785-1791. |
Gui S, Liu G G, Jiang H, et al. Synthesis of carboxymethyl polyamines chitosan and its adsorption properties for Ni(Ⅱ)[J]. CIESC Journal, 2015, 66(5): 1785-1791. | |
9 | 刘凌沁, 黄亚继, 胡华军, 等. 流化床制备玉米秸秆生物炭的Pb2+吸附特性及机理[J]. 东南大学学报(自然科学版), 2022, 52(4): 666-675. |
Liu L Q, Huang Y J, Hu H J, et al. Pb2+ adsorption characteristics and mechanism of corn stalk biochar produced by fluidized bed[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(4): 666-675. | |
10 | 张连科, 刘心宇, 王维大, 等. 油料作物秸秆生物炭对水体中铅离子的吸附特性与机制[J]. 农业工程学报, 2018, 34(7): 218-226. |
Zhang L K, Liu X Y, Wang W D, et al. Characteristics and mechanism of lead adsorption from aqueous solutions by oil crops straw-derived biochar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(7): 218-226. | |
11 | Shen Z T, Zhang Y Y, Jin F, et al. Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars[J]. Science of the Total Environment, 2017, 609: 1401-1410. |
12 | Li H B, Dong X L, Silva E B, et al. Mechanisms of metal sorption by biochars: biochar characteristics and modifications[J]. Chemosphere, 2017, 178: 466-478. |
13 | Wang L, Wang Y J, Ma F, et al. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: a review[J]. Science of the Total Environment, 2019, 668: 1298-1309. |
14 | Zhang T, Zhu X X, Shi L N, et al. Efficient removal of lead from solution by celery-derived biochars rich in alkaline minerals[J]. Bioresource Technology, 2017, 235: 185-192. |
15 | Ding Y, Liu Y G, Liu S B, et al. Competitive removal of Cd(Ⅱ) and Pb(Ⅱ) by biochars produced from water hyacinths: performance and mechanism[J]. RSC Advances, 2016, 6(7): 5223-5232. |
16 | Zhou N, Chen H G, Xi J T, et al. Biochars with excellent Pb(Ⅱ) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization[J]. Bioresource Technology, 2017, 232: 204-210. |
17 | Lu H L, Zhang W H, Yang Y X, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water Research, 2012, 46(3): 854-862. |
18 | Liu L Q, Huang Y J, Meng Y H, et al. Investigating the adsorption behavior and quantitative contribution of Pb2+ adsorption mechanisms on biochars by different feedstocks from a fluidized bed pyrolysis system[J]. Environmental Research, 2020, 187: 109609. |
19 | 国家统计局.国家数据[DB/OL]. . |
National Bureau of Statistics. National data[DB/OL]. . | |
20 | Wang Z Y, Liu G C, Zheng H, et al. Investigating the mechanisms of biochar's removal of lead from solution[J]. Bioresource Technology, 2015, 177: 308-317. |
21 | Gao L Y, Deng J H, Huang G F, et al. Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge[J]. Bioresource Technology, 2019, 272: 114-122. |
22 | Ma X W, Li F H, Ma M J, et al. Regulation of ash fusibility characteristics for high-ash-fusion-temperature coal by bean straw addition[J]. Energy & Fuels, 2018, 32(6): 6678-6688. |
23 | Huff M D, Kumar S, Lee J W, et al. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis[J]. Journal of Environmental Management, 2014, 146: 303-308. |
24 | Li J H, Burra K G, Wang Z W, et al. Effect of alkali and alkaline metals on gas formation behavior and kinetics during pyrolysis of pine wood[J]. Fuel, 2021, 290: 120081. |
25 | Liu Z G, Zhang F S. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 933-939. |
26 | 欧阳金波, 陈建, 刘峙嵘, 等. 生物质源多孔碳制备及其对废水中药物吸附研究进展[J]. 化工学报, 2020, 71(12): 5420-5429. |
Ouyang J B, Chen J, Liu Z R, et al. Research progress on preparation of biomass-derived porous carbon and its adsorption of pharmaceuticals in wastewater[J]. CIESC Journal, 2020, 71(12): 5420-5429. | |
27 | Hashimoto K, Miura K, Xu J J, et al. Relation between the gasification rate of carbons supporting alkali metal salts and the amount of oxygen trapped by the metal[J]. Fuel, 1986, 65(4): 489-494. |
28 | Knudsen J N, Jensen P A, Dam-Johansen K. Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass[J]. Energy & Fuels, 2004, 18(5): 1385-1399. |
29 | Okuno T, Sonoyama N, Hayashi J I, et al. Primary release of alkali and alkaline earth metallic species during the pyrolysis of pulverized biomass[J]. Energy & Fuels, 2005, 19(5): 2164-2171. |
30 | Kołodyńska D, Wnętrzak R, Leahy J J, et al. Kinetic and adsorptive characterization of biochar in metal ions removal[J]. Chemical Engineering Journal, 2012, 197: 295-305. |
31 | Wang X S, Lu Z P, Miao H H, et al. Kinetics of Pb(Ⅱ) adsorption on black carbon derived from wheat residue[J]. Chemical Engineering Journal, 2011, 166(3): 986-993. |
32 | Chen X C, Chen G C, Chen L G, et al. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution[J]. Bioresource Technology, 2011, 102(19): 8877-8884. |
33 | Mohan D, Pittman Jr C U, Bricka M, et al. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production[J]. Journal of Colloid and Interface Science, 2007, 310(1): 57-73. |
34 | Wang R Z, Huang D L, Liu Y G, et al. Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock[J]. Bioresource Technology, 2018, 261: 265-271. |
35 | 王耀强, 赵怡琳, 李玲慧, 等. 海胆状Fe3O4@TiO2磁性纳米介质对Pb2+的选择吸附特性[J]. 化工学报, 2018, 69(1): 446-454. |
Wang Y Q, Zhao Y L, Li L H, et al. Selective adsorption of Pb2+ by sea urchin magnetic nano-Fe3O4@TiO2 [J]. CIESC Journal, 2018, 69(1): 446-454. | |
36 | Cheng M, Zeng G M, Huang D L, et al. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review[J]. Chemical Engineering Journal, 2016, 284: 582-598. |
37 | Rwiza M J, Oh S Y, Kim K W, et al. Comparative sorption isotherms and removal studies for Pb(Ⅱ) by physical and thermochemical modification of low-cost agro-wastes from Tanzania[J]. Chemosphere, 2018, 195: 135-145. |
38 | Ding W C, Dong X L, Ime I M, et al. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars[J]. Chemosphere, 2014, 105: 68-74. |
39 | Sun J K, Lian F, Liu Z Q, et al. Biochars derived from various crop straws: characterization and Cd(Ⅱ) removal potential[J]. Ecotoxicology and Environmental Safety, 2014, 106: 226-231. |
40 | Li Y F, Liu X, Zhang P Z, et al. Qualitative and quantitative correlation of physicochemical characteristics and lead sorption behaviors of crop residue-derived chars[J]. Bioresource Technology, 2018, 270: 545-553. |
41 | Yorita H, Otomo K, Hiramatsu H, et al. Evidence for the cation-π interaction between Cu2+ and tryptophan[J]. Journal of the American Chemical Society, 2008, 130(46): 15266-15267. |
[1] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[2] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[3] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[4] | Yanmei ZHANG, Tao YUAN, Jiang LI, Yajie LIU, Zhanxue SUN. Study on the construction of high-efficient SRB mixed microflora and its performance under acid stress [J]. CIESC Journal, 2023, 74(6): 2599-2610. |
[5] | Xinlong YAN, Zhigang HUANG, Qingxun HU, Xin ZHANG, Xiaoyan HU. Catalytic nitrophenol degradation via peroxymonosulfate activation over Cu/Co doped porous carbon [J]. CIESC Journal, 2023, 74(3): 1102-1112. |
[6] | Xiqiang ZHAO, Jian ZHANG, Shuang SUN, Wenlong WANG, Yanpeng MAO, Jing SUN, Jinglong LIU, Zhanlong SONG. Study on the performance of biochar modified microspheres to remove inorganic phosphorus from chemical wastewater [J]. CIESC Journal, 2022, 73(5): 2158-2173. |
[7] | Guanyi CHEN, Tujun TONG, Rui LI, Yanshan WANG, Beibei YAN, Ning LI, Li'an HOU. Influence of pyrolysis time on sludge-derived biochar performance for peroxymonosulfate activation [J]. CIESC Journal, 2022, 73(5): 2111-2119. |
[8] | Kun QIN, Jiale LI, Zhanghong WANG, Huiyan ZHANG. Biochars derived from Ca-rich mushroom residue for phosphorus-containing wastewater treatment [J]. CIESC Journal, 2022, 73(11): 5263-5274. |
[9] | Xinjie GAO, Zaizhou XU, Yongzhen PENG, Yuwei HUANG, Jing DING, Zeming AN, Chuanxin WANG. Enhance nitrogen removal via endogenous denitrification in a sludge double recirculation-anaerobic/aerobic/anoxic process [J]. CIESC Journal, 2022, 73(11): 5098-5105. |
[10] | Xi ZHENG, Tao WANG, Yongsheng REN, Zhenzhen ZHAO, Xueqi WANG, Zhiping ZHAO. Preparation and properties research of poly(m-phenylene isophthalamide) flat-sheet membrane [J]. CIESC Journal, 2022, 73(10): 4707-4721. |
[11] | Pengbo FU,Jinyi TIAN,Wenjie LYU,Yuan HUANG,Yi LIU,Hao LU,Qiang YANG,Guangli XIU,Hualin WANG. Physical water treatment technology [J]. CIESC Journal, 2022, 73(1): 59-72. |
[12] | Tingting WANG, Xi ZENG, Zhennan HAN, Fang WANG, Peng WU, Guangwen XU. Reaction characteristics and kinetics of biomass char-steam gasification in micro-fluidized bed reaction analyzer [J]. CIESC Journal, 2022, 73(1): 294-307. |
[13] | Liting HUANG, Xushen HAN, Yan JIN, Qiang MA, Jianguo YU. Isolation, identification and application of highly efficient halotolerant strains for coal chemical reverse osmosis concentrate treatment [J]. CIESC Journal, 2021, 72(9): 4881-4891. |
[14] | TIAN Rui, WANG Peili, LYU Chao, DUAN Xue. Three-dimensional fluorescent evaluation on dispersion state for inorganic nanofiller in organic-inorganic composites [J]. CIESC Journal, 2021, 72(6): 3002-3013. |
[15] | LIANG Xingtang, LI Fengzhi, ZHONG Shuming, ZHANG Ruirui, JIAO Shufei, WANG Shuangshuang, YIN Yanzhen. In-situ modification of porous juncus with polyethyleneimine for efficient capture of Cr(Ⅵ) from wastewater [J]. CIESC Journal, 2021, 72(6): 3380-3389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||