CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 818-829.DOI: 10.11949/0438-1157.20221022
• Process system engineering • Previous Articles Next Articles
Renchu HE1(), Zhaohui ZHANG1, Minglei YANG1(), Cong WANG1, Zhenhao XI2
Received:
2022-07-15
Revised:
2022-08-24
Online:
2023-03-21
Published:
2023-02-05
Contact:
Minglei YANG
何仁初1(), 张朝晖1, 杨明磊1(), 王聪1, 奚桢浩2
通讯作者:
杨明磊
作者简介:
何仁初(1978—),男,博士,副教授,renchuhe@ecust.edu.cn
基金资助:
CLC Number:
Renchu HE, Zhaohui ZHANG, Minglei YANG, Cong WANG, Zhenhao XI. Online optimization of gasoline blending considering carbon emissions[J]. CIESC Journal, 2023, 74(2): 818-829.
何仁初, 张朝晖, 杨明磊, 王聪, 奚桢浩. 考虑碳排放因素的汽油调合在线优化[J]. 化工学报, 2023, 74(2): 818-829.
Add to citation manager EndNote|Ris|BibTeX
属性名称 | 苯含量/% (体积) | 芳烃含量/% (体积) | 烯烃含量/% (体积) |
---|---|---|---|
车用汽油国Ⅴ标准 | 1.0 | 40 | 24 |
车用汽油国Ⅵ(B)标准 | 0.8 | 35 | 15 |
属性值变化量 | 0.2 | 5 | 9 |
Table 1 Changes in the quality index of the national Ⅵ(B) standard compared to the national Ⅴ standard (GB 17930—2016)
属性名称 | 苯含量/% (体积) | 芳烃含量/% (体积) | 烯烃含量/% (体积) |
---|---|---|---|
车用汽油国Ⅴ标准 | 1.0 | 40 | 24 |
车用汽油国Ⅵ(B)标准 | 0.8 | 35 | 15 |
属性值变化量 | 0.2 | 5 | 9 |
组分油 | 单价/(CNY·t-1) | 研究法辛烷值(RON) | 烯烃 含量/% (体积) | 芳烃 含量/% (体积) | 苯 含量/% (体积) | 氧 含量/% (质量) | 10% 蒸发 温度/℃ | 50% 蒸发 温度/℃ | 90% 蒸发 温度/℃ | 终馏点/℃ | 密度(20℃)/(kg·m-3) | 硫含量/(mg·kg-1) | 蒸气压①/kPa |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
催化裂化汽油 | 4300 | 90.0 | 39.0 | 20.0 | 0.55 | 0 | 43 | 82 | 170 | 207 | 736 | 30.0 | 68 |
烷基化油 | 5300 | 96.0 | 0.1 | 0.5 | 0 | 0 | 80 | 104 | 120 | 186 | 692 | 1.2 | 54 |
重整汽油 | 5000 | 100.0 | 0.3 | 72.0 | 0.49 | 0 | 99 | 121 | 154 | 197 | 760 | 0.1 | 45 |
MTBE | 6000 | 110.0 | 0 | 0 | 0 | 18.3 | 30 | 50 | 140 | 170 | 727 | 0 | 44 |
加氢裂化轻石脑油 | 4400 | 78.6 | 1.4 | 0.2 | 1.40 | 0 | 42 | 54 | 75 | 96 | 661 | 1.0 | 84 |
Table 2 Composition properties of national Ⅵ(B) gasoline blending pool
组分油 | 单价/(CNY·t-1) | 研究法辛烷值(RON) | 烯烃 含量/% (体积) | 芳烃 含量/% (体积) | 苯 含量/% (体积) | 氧 含量/% (质量) | 10% 蒸发 温度/℃ | 50% 蒸发 温度/℃ | 90% 蒸发 温度/℃ | 终馏点/℃ | 密度(20℃)/(kg·m-3) | 硫含量/(mg·kg-1) | 蒸气压①/kPa |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
催化裂化汽油 | 4300 | 90.0 | 39.0 | 20.0 | 0.55 | 0 | 43 | 82 | 170 | 207 | 736 | 30.0 | 68 |
烷基化油 | 5300 | 96.0 | 0.1 | 0.5 | 0 | 0 | 80 | 104 | 120 | 186 | 692 | 1.2 | 54 |
重整汽油 | 5000 | 100.0 | 0.3 | 72.0 | 0.49 | 0 | 99 | 121 | 154 | 197 | 760 | 0.1 | 45 |
MTBE | 6000 | 110.0 | 0 | 0 | 0 | 18.3 | 30 | 50 | 140 | 170 | 727 | 0 | 44 |
加氢裂化轻石脑油 | 4400 | 78.6 | 1.4 | 0.2 | 1.40 | 0 | 42 | 54 | 75 | 96 | 661 | 1.0 | 84 |
组分油 | 碳排放携带量/(kg·t-1) |
---|---|
催化裂化汽油 | 241 |
烷基化油 | 969 |
重整汽油 | 529 |
MTBE | 500 |
加氢裂化轻石脑油 | 126 |
Table 3 Carrying capacity of component oil carbon emissions
组分油 | 碳排放携带量/(kg·t-1) |
---|---|
催化裂化汽油 | 241 |
烷基化油 | 969 |
重整汽油 | 529 |
MTBE | 500 |
加氢裂化轻石脑油 | 126 |
项目 | 成品汽油碳排放携带量/(kg·t-1) |
---|---|
国Ⅴ标准下的汽油调合 | 385.8 |
国Ⅵ(B)标准下的汽油调合 | 487.1 |
差值 | 101.3 |
Table 4 Comparison of carbon emission carrying capacity of gasoline under national Ⅴ and national Ⅵ(B)
项目 | 成品汽油碳排放携带量/(kg·t-1) |
---|---|
国Ⅴ标准下的汽油调合 | 385.8 |
国Ⅵ(B)标准下的汽油调合 | 487.1 |
差值 | 101.3 |
情景 | 碳排放成本/(CNY·t-1) |
---|---|
(1) | 58 |
(2) | 345 |
(3) | 1050 |
Table 5 Cost of carbon emissions under different scenarios
情景 | 碳排放成本/(CNY·t-1) |
---|---|
(1) | 58 |
(2) | 345 |
(3) | 1050 |
在线调合优化 | Cb/ (CNY·t-1) | Cc/ (CNY·t-1) | Ce/ (CNY·t-1) | Eb/(kg·t-1) |
---|---|---|---|---|
不考虑碳排放因素 | 4867.6 | 4839.3 | 28.3 | 487.1 |
考虑碳排放因素 | 4863.1 | 4840.6 | 22.5 | 388.0 |
差值 | -4.5 | 1.3 | -5.8 | -99.1 |
Table 6 Comparison of optimization results under scenario(1)
在线调合优化 | Cb/ (CNY·t-1) | Cc/ (CNY·t-1) | Ce/ (CNY·t-1) | Eb/(kg·t-1) |
---|---|---|---|---|
不考虑碳排放因素 | 4867.6 | 4839.3 | 28.3 | 487.1 |
考虑碳排放因素 | 4863.1 | 4840.6 | 22.5 | 388.0 |
差值 | -4.5 | 1.3 | -5.8 | -99.1 |
1 | 刘学之, 黄敬, 郑燕燕, 等. 碳交易背景下中国石化行业2020年碳减排目标情景分析[J]. 中国人口·资源与环境, 2017, 27(10): 103-114. |
Liu X Z, Huang J, Zheng Y Y, et al. Scenario analysis of carbon emission reduction target on China's petrochemical industry in 2020 under carbon trading background based on PCCGE model[J]. China Population, Resources and Environment, 2017, 27(10): 103-114. | |
2 | Elkamel A, Ba-Shammakh M, Douglas P, et al. An optimization approach for integrating planning and CO2 emission reduction in the petroleum refining industry[J]. Industrial & Engineering Chemistry Research, 2008, 47(3): 760-776. |
3 | Al Dhaheri N, Diabat A. A mathematical programming approach to reducing carbon dioxide emissions in the petroleum refining industry[C]//2010 Second International Conference on Engineering System Management and Applications. Sharjah, United Arab Emirates: IEEE, 2010. |
4 | Gezehei I, Almehrezi A. Mathematical model development with emissions considerations in oil refinery[C]//Proceedings of 2013 International Conference on Industrial Engineering and Systems Management (IESM). Agdal, Morocco: IEEE, 2013. |
5 | Liu N B, Kayyali D, Yousef S. Integration of CO2 management within oil refinery planning[C]//Proceedings of 2013 International Conference on Industrial Engineering and Systems Management (IESM). Agdal, Morocco: IEEE, 2013. |
6 | Kangas I, Nikolopoulou C, Attiya M. Modeling & optimization of the FCC unit to maximize gasoline production and reduce carbon dioxide emissions in the presence of CO2 emissions trading scheme[C]//Proceedings of 2013 International Conference on Industrial Engineering and Systems Management (IESM). Agdal, Morocco: IEEE, 2013. |
7 | Abdul-Manan A F N, Arfaj A, Babiker H. Oil refining in a CO2 constrained world: effects of carbon pricing on refineries globally[J]. Energy, 2017, 121: 264-275. |
8 | Chan W N, Walter A, Sugiyama M I, et al. Assessment of CO2 emission mitigation for a Brazilian oil refinery[J]. Brazilian Journal of Chemical Engineering, 2016, 33(4): 835-850. |
9 | Taqvi S, Almansoori A, Elkamel A. Optimal renewable energy integration into the process industry using multi-energy hub approach with economic and environmental considerations: refinery-wide case study[J]. Computers & Chemical Engineering, 2021, 151: 107345. |
10 | 王玉梅, 程辉, 钱锋. 改进生物地理学优化算法及其在汽油调合调度中的应用[J]. 化工学报, 2016, 67(3): 773-778. |
Wang Y M, Cheng H, Qian F. Improved biogeography-based optimization algorithm and its application in gasoline blending scheduling[J]. CIESC Journal, 2016, 67(3): 773-778. | |
11 | 袁奇, 程辉, 钟伟民, 等. 全局群搜索优化算法及其在汽油调合中的应用[J]. 化工学报, 2013, 64(12): 4427-4433. |
Yuan Q, Cheng H, Zhong W M, et al. Improved group search optimizer and application on gasoline blending process[J]. CIESC Journal, 2013, 64(12): 4427-4433. | |
12 | Wang C, Zhong W M, He R C, et al. A scenario-based chance-constrained program for gasoline blending under uncertainty[J]. Industrial & Engineering Chemistry Research, 2022, 61(15): 5215-5226. |
13 | Long J, Jiang S Y, Liu T B, et al. Modified hybrid strategy integrating online adjustable oil property characterization and data-driven robust optimization under uncertainty: application in gasoline blending[J]. Energy & Fuels, 2022, 36(12): 6581-6596. |
14 | Zhou K L, Li Y W. Carbon finance and carbon market in China: progress and challenges[J]. Journal of Cleaner Production, 2019, 214: 536-549. |
15 | Ji C J, Hu Y J, Tang B J, et al. Price drivers in the carbon emissions trading scheme: evidence from Chinese emissions trading scheme pilots[J]. Journal of Cleaner Production, 2021, 278: 123469. |
16 | Hua Y F, Dong F. China's carbon market development and carbon market connection: a literature review[J]. Energies, 2019, 12(9): 1663. |
17 | 王伟. 国Ⅵ标准汽油质量升级方案分析[J]. 石油炼制与化工, 2019, 50(8): 6-12. |
Wang W. Analysis of national standard Ⅵ gasoline upgrading processes[J]. Petroleum Processing and Petrochemicals, 2019, 50(8): 6-12. | |
18 | 程冬茹. 汽柴油全生命周期碳排放计算[D]. 北京: 中国石油大学(北京), 2016. |
Cheng D R. Carbon emissions calculation of gasoline and diesel fuel based on life cycle assessment[D]. Beijing: China University of Petroleum, 2016. | |
19 | 贾曌, 施大鹏. 炼油过程碳排放量化模型构建及汽油质量升级碳排放测算[J]. 石油炼制与化工, 2021, 52(5): 98-102. |
Jia Z, Shi D P. Modeling of carbon emission in refining process and estimation of carbon emission from gasoline quality upgrading[J]. Petroleum Processing and Petrochemicals, 2021, 52(5): 98-102. | |
20 | Pasadakis N, Gaganis V, Foteinopoulos C. Octane number prediction for gasoline blends[J]. Fuel Processing Technology, 2006, 87(6): 505-509. |
21 | 佟新宇. 优化控制及近红外技术在汽油调合中应用的研究[D]. 天津: 天津大学, 2005. |
Tong X Y. Research on application of optimal control and near-infrared technology in gasoline blending[D]. Tianjin: Tianjin University, 2005. | |
22 | 程辉, 刘朝, 钱锋. 新的汽油调合辛烷值模型及其现场应用[J]. 计算机与应用化学, 2010, 27(10): 1317-1320. |
Cheng H, Liu Z, Qian F. A novel octane number model for gasoline blending and its application[J]. Computers and Applied Chemistry, 2010, 27(10): 1317-1320. | |
23 | 竺柏康. 油品储运[M]. 北京: 中国石化出版社, 1999. |
Zhu B K. Oil Storage and Transportation[M]. Beijing: China Petrochemical Press, 1999. | |
24 | 李祖奎. 油品调合优化与控制研究[D]. 合肥: 中国科学技术大学, 2005. |
Li Z K. Research on optimization and control of oil blending[D]. Hefei: University of Science and Technology of China, 2005. | |
25 | Hao H, Liu F Q, Liu Z W, et al. Compression ignition of low-octane gasoline: life cycle energy consumption and greenhouse gas emissions[J]. Applied Energy, 2016, 181: 391-398. |
26 | 何仁初, 陈海泉, 张卫东, 等. 基于严格约束的汽油调合双调合头协调优化方法[J]. 石油学报(石油加工), 2019, 35(2): 337-347. |
He R C, Chen H Q, Zhang W D, et al. Coordinated optimization method of dual head gasoline blending under strict constraint conditions[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(2): 337-347. | |
27 | 何仁初, 陈海泉, 杨超文. 面向国Ⅵ标准的汽油调合优化技术探讨与分析[J]. 化工进展, 2018, 37(3): 962-969. |
He R C, Chen H Q, Yang C W. Discussion and analysis on optimization technology of gasoline blending for Chinese national standard Ⅵ[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 962-969. | |
28 | 贺宗江, 房韦华, 王锋, 等. 汽油调合累积过程在线控制与优化[J]. 计算机与应用化学, 2012, 29(7): 895-899. |
He Z J, Fang W, Wang F, et al. On-line control and optimization of the heap process in the gasoline blending[J]. Computers and Applied Chemistry, 2012, 29(7): 895-899. | |
29 | 伍叶露, 刘潇潇. 基于动态成本模型的石化企业碳排放压力及对策分析[J]. 当代石油石化, 2020, 28(11): 16-22. |
Wu Y L, Liu X X. Analysis on carbon emission pressure and countermeasures of petrochemical enterprises based on dynamic cost model[J]. Petroleum & Petrochemical Today, 2020, 28(11): 16-22. | |
30 | 董晓梅. 我国碳减排的成本和效益分析[D]. 北京: 华北电力大学, 2013. |
Dong X M. Analysis of cost and benefit of carbon emission reduction in China[D]. Beijing: North China Electric Power University, 2013. | |
31 | 吴慧娟, 张智光. 中国碳市场价格特征及其成因分析:高低性、均衡性与稳定性[J]. 世界林业研究, 2021, 34(3): 123-128. |
Wu H J, Zhang Z G. Price characteristics and its causes in China's carbon market: level, equilibrium and stability[J]. World Forestry Research, 2021, 34(3): 123-128. | |
32 | Tang B J, Ji C J, Hu Y J, et al. Optimal carbon allowance price in China's carbon emission trading system: perspective from the multi-sectoral marginal abatement cost[J]. Journal of Cleaner Production, 2020, 253: 119945. |
33 | 周艳春, 刘明浩. 基于DDF分析模型的石油行业边际碳减排成本估算研究[J]. 环境科学与管理, 2018, 43(3): 10-14. |
Zhou Y C, Liu M H. Estimation of marginal carbon emission of petroleum industry based on DDF model[J]. Environmental Science and Management, 2018, 43(3): 10-14. | |
34 | Zhao X G, Jiang G W, Nie D, et al. How to improve the market efficiency of carbon trading: a perspective of China[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 1229-1245. |
35 | Zhou X, Fan L W, Zhou P. Marginal CO2 abatement costs: findings from alternative shadow price estimates for Shanghai industrial sectors[J]. Energy Policy, 2015, 77: 109-117. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[5] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[6] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[7] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[8] | Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072. |
[9] | Chenyang SHEN, Kaihang SUN, Yueping ZHANG, Changjun LIU. Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2023, 74(1): 145-156. |
[10] | Dan GUO, Yujie FANG, Yihan XU, Zhiyuan LI, Shouying HUANG, Shengping WANG, Xinbin MA. Research progress of the catalytic conversion of ethane and carbon dioxide [J]. CIESC Journal, 2022, 73(8): 3406-3416. |
[11] | Wenhua DAI, Zhong XIN. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2022, 73(8): 3586-3596. |
[12] | Wangxin GE, Yihua ZHU, Hongliang JIANG, Chunzhong LI. Research progress on electrolytes for carbon dioxide electroreduction [J]. CIESC Journal, 2022, 73(8): 3433-3447. |
[13] | Jiaming WANG, Xuehua RUAN, Gaohong HE. Research progress of membrane separation materials for different industrial CO2-containing mixtures [J]. CIESC Journal, 2022, 73(8): 3417-3432. |
[14] | Zhenyu LIU. Origin of low productivity of underground coal gasification: diffusion and reaction in stagnant boundary layer and gasification tunnel [J]. CIESC Journal, 2022, 73(8): 3299-3306. |
[15] | Lei WANG, Yong JIANG, Dazhong ZHONG, Jiayuan LI, Genyan HAO, Qiang ZHAO, Jinping LI. Carbonized metal-organic framework for carbon dioxide reduction to ethylene and ethanol [J]. CIESC Journal, 2022, 73(8): 3576-3585. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||