CIESC Journal ›› 2023, Vol. 74 ›› Issue (1): 365-379.DOI: 10.11949/0438-1157.20221183
• Reviews and monographs • Previous Articles Next Articles
Muzi LI1(), Guowei JIA2, Yanlong ZHAO1, Xin ZHANG1(
), Jianrong LI1(
)
Received:
2022-08-30
Revised:
2022-11-11
Online:
2023-03-20
Published:
2023-01-05
Contact:
Xin ZHANG, Jianrong LI
李沐紫1(), 贾国伟2, 赵砚珑1, 张鑫1(
), 李建荣1(
)
通讯作者:
张鑫,李建荣
作者简介:
李沐紫(1998—),女,硕士研究生,limuzi@bjut.edu.cn
基金资助:
CLC Number:
Muzi LI, Guowei JIA, Yanlong ZHAO, Xin ZHANG, Jianrong LI. The progress of metal-organic frameworks for non-CO2 greenhouse gases capture[J]. CIESC Journal, 2023, 74(1): 365-379.
李沐紫, 贾国伟, 赵砚珑, 张鑫, 李建荣. 金属有机框架材料对非二氧化碳温室气体捕捉研究进展[J]. 化工学报, 2023, 74(1): 365-379.
气体名称 | 分子式 | 寿命/a | GWP 20 | GWP 100 | GWP 500 | GTP 50 | GTP 100 |
---|---|---|---|---|---|---|---|
二氧化碳 | CO2 | — | 1 | 1 | 1 | 1 | 1 |
甲烷 | CH4 | 11.8 | 81.2 | 27.9 | 7.95 | 11 | 5.38 |
氧化亚氮 | N2O | 109 | 273 | 273 | 130 | 290 | 233 |
氢氟化碳(HFCs) | |||||||
HFC-23 | CHF3 | 228 | 12400 | 14600 | 10500 | 15400 | 15100 |
HFC-32 | CH2F2 | 5.4 | 2690 | 771 | 220 | 181 | 142 |
HFC-125 | CHF2CF3 | 30 | 6740 | 3740 | 1110 | 3300 | 1300 |
HFC-134a | CH2FCF3 | 147 | 4140 | 1530 | 436 | 733 | 306 |
HFC-143a | CH3CF3 | 51 | 7840 | 5810 | 1940 | 5910 | 3250 |
HFC-152a | CH3CHF2 | 1.6 | 591 | 164 | 46.8 | 36.5 | 29.8 |
HFC-227ea | CF3CHFCF3 | 36 | 5850 | 3600 | 1100 | 3400 | 1490 |
HFC-236fa | CF3CH2CF3 | 213 | 7450 | 8690 | 6040 | 9200 | 88700 |
HFC-245fa | CHF2CH2CF3 | 7.9 | 3170 | 962 | 274 | 262 | 180 |
全氟化碳(PFCs) | |||||||
PFC-14 | CF4 | 50000 | 5300 | 7380 | 34100 | 7660 | 9050 |
PFC-116 | C2F6 | 10000 | 8940 | 12400 | 10600 | 12900 | 15200 |
六氟化硫 | SF6 | 3200 | 18300 | 25200 | 17500 | 26200 | 30600 |
三氟化氮 | NF3 | 569 | 13400 | 17400 | 18200 | 18200 | 20000 |
Table 1 Global warming potential (GWP), global temperature potential (GTP) and lifetime of green house gases[8]
气体名称 | 分子式 | 寿命/a | GWP 20 | GWP 100 | GWP 500 | GTP 50 | GTP 100 |
---|---|---|---|---|---|---|---|
二氧化碳 | CO2 | — | 1 | 1 | 1 | 1 | 1 |
甲烷 | CH4 | 11.8 | 81.2 | 27.9 | 7.95 | 11 | 5.38 |
氧化亚氮 | N2O | 109 | 273 | 273 | 130 | 290 | 233 |
氢氟化碳(HFCs) | |||||||
HFC-23 | CHF3 | 228 | 12400 | 14600 | 10500 | 15400 | 15100 |
HFC-32 | CH2F2 | 5.4 | 2690 | 771 | 220 | 181 | 142 |
HFC-125 | CHF2CF3 | 30 | 6740 | 3740 | 1110 | 3300 | 1300 |
HFC-134a | CH2FCF3 | 147 | 4140 | 1530 | 436 | 733 | 306 |
HFC-143a | CH3CF3 | 51 | 7840 | 5810 | 1940 | 5910 | 3250 |
HFC-152a | CH3CHF2 | 1.6 | 591 | 164 | 46.8 | 36.5 | 29.8 |
HFC-227ea | CF3CHFCF3 | 36 | 5850 | 3600 | 1100 | 3400 | 1490 |
HFC-236fa | CF3CH2CF3 | 213 | 7450 | 8690 | 6040 | 9200 | 88700 |
HFC-245fa | CHF2CH2CF3 | 7.9 | 3170 | 962 | 274 | 262 | 180 |
全氟化碳(PFCs) | |||||||
PFC-14 | CF4 | 50000 | 5300 | 7380 | 34100 | 7660 | 9050 |
PFC-116 | C2F6 | 10000 | 8940 | 12400 | 10600 | 12900 | 15200 |
六氟化硫 | SF6 | 3200 | 18300 | 25200 | 17500 | 26200 | 30600 |
三氟化氮 | NF3 | 569 | 13400 | 17400 | 18200 | 18200 | 20000 |
材料 | 选择性 | 吸附容量/ (cm3 CH4/g) | 压力/bar | 温度/ K | 文献 |
---|---|---|---|---|---|
Ni(ina)2 | 15.8① | 40.8 | 1 | 298 | [ |
Al-CDC | 13.0① | 29.24 | 1 | 298 | [ |
Co(C4O2)2(OH)2 | 12.5① | 8.26 | 1 | 298 | [ |
Al-Fum | 11.7① | 25.54 | 1 | 298 | [ |
SB-MOF | 11.5① | 26.15 | 1 | 298 | [ |
Cu-MOF | 11.0① | 13.70 | 1 | 298 | [ |
ATC-Cu | 9.0① | 62.5 | 1 | 298 | [ |
Ni(3-ain)2 | 9.0① | 46.7 | 1 | 298 | [ |
MIL-160 | 8.9① | 10.53 | 1 | 298 | [ |
Cu(INA)2 | 8.3① | 16.07 | 1 | 298 | [ |
CAU-10-H | 7.2① | 16.58 | 1 | 298 | [ |
MIL-53 | 7.1① | 12.77 | 1 | 298 | [ |
Zn(CH3COO)2·H2O | 7.0① | 24.64 | 1 | 298 | [ |
Ni-BPZ | 6.6① | 34.94 | 1 | 298 | [ |
[Ni(HCOO)6] | 6.1① | 17.47 | 1 | 298 | [ |
ZIF-8 | 5.2 | 90.05 | 1 | 196 | [ |
UiO-66-Br2 | 5.1① | 11.41 | 1 | 298 | [ |
[Co(HCOO)6] | 5.1① | 10.98 | 1 | 298 | [ |
Cu(OTf) 2D | 4.8① | 5.7 | 1 | 298 | [ |
Ni(2-ain)2 | 4.2① | 6.8 | 1 | 298 | [ |
MOF-177 | 4.0① | 12.28 | 1 | 298 | [ |
Ni-MOF-74 | 3.8① | 31.74 | 1 | 298 | [ |
HKUST-1 | 3.7① | 18.35 | 1 | 298 | [ |
Cu(OTf) 3D | 3.2① | 7.9 | 1 | 298 | [ |
MIL-100(Cr) | 3① | 12.32 | 1 | 298 | [ |
MIL-100(V) | 3① | 4.98 | 1 | 298 | [ |
Co-MOF-74 | 3① | 28.57 | 1 | 298 | [ |
Mg-MOF-74 | 1.5① | 33.86 | 1 | 298 | [ |
Ni(pba)2 | 1.6① | 17.1 | 1 | 298 | [ |
MOF-5 | 1.1① | 1.72 | 1 | 298 | [ |
V2Cl2.8(btdd) | >20② | 42.56 | 1 | 298 | [ |
MIL-101(Cr) | 5~10② | 21.28(1 bar) | 0.1~10 | 283 | [ |
MIL-100(Cr) | 8② | 35.84 | 1 | 293 | [ |
TYUT-96Cr | 4.6② | 约25 | 1 | 298 | [ |
Table 2 MOFs separation performance for CH4/N2
材料 | 选择性 | 吸附容量/ (cm3 CH4/g) | 压力/bar | 温度/ K | 文献 |
---|---|---|---|---|---|
Ni(ina)2 | 15.8① | 40.8 | 1 | 298 | [ |
Al-CDC | 13.0① | 29.24 | 1 | 298 | [ |
Co(C4O2)2(OH)2 | 12.5① | 8.26 | 1 | 298 | [ |
Al-Fum | 11.7① | 25.54 | 1 | 298 | [ |
SB-MOF | 11.5① | 26.15 | 1 | 298 | [ |
Cu-MOF | 11.0① | 13.70 | 1 | 298 | [ |
ATC-Cu | 9.0① | 62.5 | 1 | 298 | [ |
Ni(3-ain)2 | 9.0① | 46.7 | 1 | 298 | [ |
MIL-160 | 8.9① | 10.53 | 1 | 298 | [ |
Cu(INA)2 | 8.3① | 16.07 | 1 | 298 | [ |
CAU-10-H | 7.2① | 16.58 | 1 | 298 | [ |
MIL-53 | 7.1① | 12.77 | 1 | 298 | [ |
Zn(CH3COO)2·H2O | 7.0① | 24.64 | 1 | 298 | [ |
Ni-BPZ | 6.6① | 34.94 | 1 | 298 | [ |
[Ni(HCOO)6] | 6.1① | 17.47 | 1 | 298 | [ |
ZIF-8 | 5.2 | 90.05 | 1 | 196 | [ |
UiO-66-Br2 | 5.1① | 11.41 | 1 | 298 | [ |
[Co(HCOO)6] | 5.1① | 10.98 | 1 | 298 | [ |
Cu(OTf) 2D | 4.8① | 5.7 | 1 | 298 | [ |
Ni(2-ain)2 | 4.2① | 6.8 | 1 | 298 | [ |
MOF-177 | 4.0① | 12.28 | 1 | 298 | [ |
Ni-MOF-74 | 3.8① | 31.74 | 1 | 298 | [ |
HKUST-1 | 3.7① | 18.35 | 1 | 298 | [ |
Cu(OTf) 3D | 3.2① | 7.9 | 1 | 298 | [ |
MIL-100(Cr) | 3① | 12.32 | 1 | 298 | [ |
MIL-100(V) | 3① | 4.98 | 1 | 298 | [ |
Co-MOF-74 | 3① | 28.57 | 1 | 298 | [ |
Mg-MOF-74 | 1.5① | 33.86 | 1 | 298 | [ |
Ni(pba)2 | 1.6① | 17.1 | 1 | 298 | [ |
MOF-5 | 1.1① | 1.72 | 1 | 298 | [ |
V2Cl2.8(btdd) | >20② | 42.56 | 1 | 298 | [ |
MIL-101(Cr) | 5~10② | 21.28(1 bar) | 0.1~10 | 283 | [ |
MIL-100(Cr) | 8② | 35.84 | 1 | 293 | [ |
TYUT-96Cr | 4.6② | 约25 | 1 | 298 | [ |
Fig.1 Illustration of the crystal structure of ATC-Cu (a); The methane and nitrogen adsorption isotherm for ATC-Cu at 273 and 298 K (b); The CH4/N2 selectivity for high-performance materials at 1 bar and 298 K (c); The comparison of traditional methane adsorbent and nano-trap (d)[33]
Fig.2 Illustration of the crystal structure of Ni(ina)2 (a); Comparison of IAST selectivity of CH4 uptake for previously reported MOFs with Al-CDC (b)[27]
分子 | 动力学直径/Å | 偶极矩/ | 极化率/(C·m²/V) | 四极矩/m2 |
---|---|---|---|---|
N2O | 3.30 | 0.17 | 3.08 | 3 |
CO2 | 3.30 | 0 | 2.93 | 4.3 |
N2 | 3.64 | 0 | 1.74 | 1.4 |
Table 3 Physical properties of N2O emission components[56]
分子 | 动力学直径/Å | 偶极矩/ | 极化率/(C·m²/V) | 四极矩/m2 |
---|---|---|---|---|
N2O | 3.30 | 0.17 | 3.08 | 3 |
CO2 | 3.30 | 0 | 2.93 | 4.3 |
N2 | 3.64 | 0 | 1.74 | 1.4 |
材料 | N2O/CO2选择性 | N2O吸附容量/(ml/g) | 压力/bar | 温度/K | 文献 |
---|---|---|---|---|---|
MIL-101(Cr)-NH2 | 1.91 | 113.76 | 1 | 298 | [ |
MIL-100(Fe) | 1.84 | 105.27 | 1 | 298 | [ |
ZIF-7 | 1.4~1.7 | 56 | 1 | 298 | [ |
MIL-101(Cr) | 1.49 | 122 | 1 | 298 | [ |
ZIF-8 | 1.30 | 31.1 | 1 | 298 | [ |
MIL-101(Cr)-Br | 1.30 | 57.78 | 1 | 298 | [ |
UiO-66 | 1.29 | 96.9 | 1 | 298 | [ |
HKUST-1 | 1.20 | 87.6 | 1 | 298 | [ |
NU-1000-PhTz | 1.10 | 35.8 | 1 | 298 | [ |
MIL-101(Cr)-NO2 | 1.02 | 53.31 | 1 | 298 | [ |
MIL-100(Cr) | 1 | 129.4 | 1 | 298 | [ |
MOF-5 | — | 20.4 | 1 | 298 | [ |
Ni-MOF | — | 63 | 1 | 298 | [ |
ELM-11 | — | 1.46 | 1 | 298 | [ |
ELM-12 | — | 19.26 | 1 | 298 | [ |
MIL-53(Al) | — | 60.48 | 1 | 298 | [ |
Table 4 MOFs separation performance for N2O/CO2
材料 | N2O/CO2选择性 | N2O吸附容量/(ml/g) | 压力/bar | 温度/K | 文献 |
---|---|---|---|---|---|
MIL-101(Cr)-NH2 | 1.91 | 113.76 | 1 | 298 | [ |
MIL-100(Fe) | 1.84 | 105.27 | 1 | 298 | [ |
ZIF-7 | 1.4~1.7 | 56 | 1 | 298 | [ |
MIL-101(Cr) | 1.49 | 122 | 1 | 298 | [ |
ZIF-8 | 1.30 | 31.1 | 1 | 298 | [ |
MIL-101(Cr)-Br | 1.30 | 57.78 | 1 | 298 | [ |
UiO-66 | 1.29 | 96.9 | 1 | 298 | [ |
HKUST-1 | 1.20 | 87.6 | 1 | 298 | [ |
NU-1000-PhTz | 1.10 | 35.8 | 1 | 298 | [ |
MIL-101(Cr)-NO2 | 1.02 | 53.31 | 1 | 298 | [ |
MIL-100(Cr) | 1 | 129.4 | 1 | 298 | [ |
MOF-5 | — | 20.4 | 1 | 298 | [ |
Ni-MOF | — | 63 | 1 | 298 | [ |
ELM-11 | — | 1.46 | 1 | 298 | [ |
ELM-12 | — | 19.26 | 1 | 298 | [ |
MIL-53(Al) | — | 60.48 | 1 | 298 | [ |
Fig.3 The DFT-calculated adsorption configurations of CO2 and N2O on the Fe3+-F–, open-Fe3+ site and open Fe2+ sites in MIL-100(Fe), using a cluster model[60]
Fig.5 Representative 3D variations of the framework in LIFM-W2 responsive to different aromatic guests, illustrated by the changes of pore size and key parameters of the basic unit of the topologically simplified pcu net (a);R22 and R134a uptakes at 273 K and 298 K [(b),(c)];Column breakthrough curves of N2/R22/R134a mixed gases (99.8 : 0.01 : 0.01, volume ratio) at 298 K by using LIFM-W2 (d) [23]
材料 | SF6/N2选择性 | SF6吸附容量/(cm3/g) | 压力/bar | 温度/K | 文献 |
---|---|---|---|---|---|
Ni(NDC)(TED)0.5 | 750 | 61.86 | 1 | 298 | [ |
SBMOF-1 | 727 | 22.8 | 1 | 298 | [ |
Ni(ina)2 | 375.1 | 63.7 | 1 | 298 | [ |
Zn-MOF-74 | 313 | 85.12 | 1 | 298 | [ |
Cu-MOF-NH2 | 266 | 176.51 | 1 | 298 | [ |
Ni(pba)2 | 200.6 | 78.5 | 1 | 298 | [ |
Co-MOF-74 | 52.9 | 116.48 | 1 | 298 | [ |
UU-200 | 44.81 | 24.69 | 1 | 298 | [ |
UiO-67 | 37 | 133.6 | 1 | 298 | [ |
Mg-MOF-74 | 32.9 | 134.4 | 1 | 298 | [ |
Cu(peba)2 | 18.2 | 52.8 | 1 | 298 | [ |
MIL-101 | — | 276 | 18 | 298 | [ |
Cu3(BTC)2 | — | 107.07 | 1 | 298 | [ |
Co2(1,4-bdc)2(dabco) | — | 75.94 | 1 | 298 | [ |
Zn4O(btb) | — | 69.89 | 1 | 298 | [ |
MIL-100(Fe) | — | 65.86 | 1 | 298 | [ |
Zn4O(dmcpz)3 | — | 56.9 | 1 | 298 | [ |
DUT-9 | — | 52 | 18 | 298 | [ |
Table 5 MOFs separation performance for SF6/N2
材料 | SF6/N2选择性 | SF6吸附容量/(cm3/g) | 压力/bar | 温度/K | 文献 |
---|---|---|---|---|---|
Ni(NDC)(TED)0.5 | 750 | 61.86 | 1 | 298 | [ |
SBMOF-1 | 727 | 22.8 | 1 | 298 | [ |
Ni(ina)2 | 375.1 | 63.7 | 1 | 298 | [ |
Zn-MOF-74 | 313 | 85.12 | 1 | 298 | [ |
Cu-MOF-NH2 | 266 | 176.51 | 1 | 298 | [ |
Ni(pba)2 | 200.6 | 78.5 | 1 | 298 | [ |
Co-MOF-74 | 52.9 | 116.48 | 1 | 298 | [ |
UU-200 | 44.81 | 24.69 | 1 | 298 | [ |
UiO-67 | 37 | 133.6 | 1 | 298 | [ |
Mg-MOF-74 | 32.9 | 134.4 | 1 | 298 | [ |
Cu(peba)2 | 18.2 | 52.8 | 1 | 298 | [ |
MIL-101 | — | 276 | 18 | 298 | [ |
Cu3(BTC)2 | — | 107.07 | 1 | 298 | [ |
Co2(1,4-bdc)2(dabco) | — | 75.94 | 1 | 298 | [ |
Zn4O(btb) | — | 69.89 | 1 | 298 | [ |
MIL-100(Fe) | — | 65.86 | 1 | 298 | [ |
Zn4O(dmcpz)3 | — | 56.9 | 1 | 298 | [ |
DUT-9 | — | 52 | 18 | 298 | [ |
Fig.6 Illustration of the identified top-performers MOF hereafter labeled Cu-MOF-NH2 consisting of dimeric metal-paddlewheel units [Cu2(CO2)4] and bent NH2-TPTC linkers (a);Representation of the calix arene-analogous microenvironments present in the cavity of Cu-MOF-NH2 (b); The SF6 uptake as a single component at 0.1 bar and the IAST selectivity predicted at 298 K and 1.0 bar for the gas mixture (SF6∶N2=10∶90), respectively (c)[87]
Fig.7 The pore structures of Cu(peba)2, Ni(pba)2 and Ni(ina)2 (a); SF6 and N2 adsorption isotherms of the three materials at 298 K [(b)-(d)]; SF6/N2 selectivity of the three MOFs calculated at 298 K (SF6/N2 volume ratio 1/9) using IAST (e); Comparison of SF6/N2 (1/9) IAST selectivities at 298 K and 1 bar and SF6 uptakes at 298 K and 0.1 bar in Ni(ina)2, Ni(pba)2, Cu(peba)2 and other top-performance materials (f); The calculated adsorption binding sites of SF6 in Ni(ina)2 (g)[79]
1 | Sesana E, Gagnon A S, Ciantelli C, et al. Climate change impacts on cultural heritage: a literature review[J]. WIREs Climate Change, 2021, 12(4): e710. |
2 | Hansen J, Sato M, Hearty P, et al. Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2℃ global warming could be dangerous[J]. Atmospheric Chemistry and Physics, 2016, 16(6): 3761-3812. |
3 | Zarch A E, Ahmadi H, Moeini A, et al. Impacts of environmental and human factors on desertification-induced land degradation in arid areas[J]. Arabian Journal of Geosciences, 2021, 14(22): 2447-2458. |
4 | Grünig M, Calanca P, Mazzi D, et al. Inflection point in climatic suitability of insect pest species in Europe suggests non‐linear responses to climate change[J]. Global Change Biology, 2020, 26(11): 6338-6349. |
5 | 章诚, 郑玉洁, 凌红. 中国的“双碳”目标与实践: 形成逻辑、现实挑战、社会风险及推进进路[J]. 河海大学学报(哲学社会科学版), 2022, 24(6): 78-87. |
Zhang C, Zheng Y J, Ling H. China’s “dual carbon” goal and practices: forming logic, realistic challenges, social risks and advancing route[J]. Journal of Hohai University (Philosophy and Social Sciences), 2022, 24(6): 78-87. | |
6 | United Nations framework convention on climate change Kyoto Protocol [EB/OL]. 1997.[2022-07-30]. . |
7 | Cao J J, Zeng N, Liu Y, et al. Preface to the special issue on carbon neutrality: important roles of renewable energies, carbon sinks, NETs, and non-CO2 GHGs[J]. Advances in Atmospheric Science, 2022, 39: 1207-1208. |
8 | Intergovernmental Panel on Climate Change. AR6 synthesis report: climate change 2022[R]. IPCC, 2022. |
9 | Duda A, Valverde G F. Environmental and safety risks related to methane emissions in underground coal mine closure processes[J]. Energies, 2020, 13(23): 6312-6328. |
10 | Hönemann C, Kim S C. Please stop using nitrous oxide in routine clinical practice (comment on: use of nitrous oxide in contemporary anesthesia—an ongoing tug of war)[J]. Canadian Journal of Anaesthesia, 2021, 69(2): 271-272. |
11 | Liu X, Zhu Y, Liu T, et al. Exploring toxicity of perfluorinated compounds through complex network and pathway modeling[J]. Journal of Biomolecular Structure and Dynamics, 2020, 38(9): 2604-2612. |
12 | Lin R B, Wu H, Li L, et al. Boosting ethane/ethylene separation within isoreticular ultramicroporous metal-organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(40): 12940-12946. |
13 | Zhu B, Cao J W, Mukherjee S, et al. Pore engineering for one-step ethylene purification from a three-component hydrocarbon mixture[J]. Journal of the American Chemical Society, 2021, 143(3): 1485-1492. |
14 | Fracaroli A M, Furukawa H, Suzuki M, et al. Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water[J]. Journal of the American Chemical Society, 2014, 136(25): 8863-8866. |
15 | Herm Z R, Swisher J A, Smit B, et al. Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture[J]. Journal of the American Chemical Society, 2011, 133(15): 5664-5667. |
16 | D’alessandro D M, Smit B, Long J R. Carbon dioxide capture: prospects for new materials[J]. Angewandte Chemie International Edition, 2010, 49(35): 6058-6082. |
17 | Borchardt L, Zhu Q L, Casco M E, et al. Toward a molecular design of porous carbon materials[J]. Materials Today, 2017, 20(10): 592-610. |
18 | Zhang X, Lin R B, Wang J, et al. Optimization of the pore structures of MOFs for record high hydrogen volumetric working capacity[J]. Advanced Materials, 2020, 32(17) :1907995. |
19 | Wang B, Lv X L, Feng D, et al. Highly stable Zr(Ⅳ)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water[J]. Journal of the American Chemical Society, 2016, 138(19): 6204-6216. |
20 | Wang H T, Chen Q, Zhang X, et al. Two isostructural metal-organic frameworks with unique nickel clusters for C2H2/C2H6/C2H4 mixture separation[J]. Journal of Materials Chemistry A, 2022, 10(23): 12497-12502. |
21 | Xin Z, Wang Y R, Chen Y, et al. Metallocene implanted metalloporphyrin organic framework for highly selective CO2 electroreduction[J]. Nano Energy, 2020, 67: 30940-30941. |
22 | Wang M, Guo L, Cao D. Amino-functionalized luminescent metal-organic framework test paper for rapid and selective sensing of SO2 gas and its derivatives by luminescence turn-on effect[J]. Analytical Chemistry, 2018, 90(5): 3608-3614. |
23 | Wang W, Xiong X H, Zhu N X, et al. A rare flexible metal-organic framework based on a tailorable Mn8-cluster showing smart responsiveness to aromatic guests and capacity for gas separation[J]. Angewandte Chemie International Edition, 2022, 61(26): e202201766. |
24 | Cui X L, Xing H B, Yang Q W, et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene[J]. Science, 2016, 353(6295): 141-144. |
25 | Lin J B, Ramanathan V, Jake B, et al. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture[J]. Science 2021, 374(6574): 1464-1469. |
26 | Zhang X, Li J R. Recovery of greenhouse gas as cleaner fossil fuel contributes to carbon neutrality[J]. Green Energy & Environment, 2022, doi:10.1016/j.gee.2022.06.002 . |
27 | Wang S M, Shivanna M, Yang Q Y. Nickel-based metal-organic frameworks for coal-bed methane purification with record CH4/N2 selectivity[J]. Angewandte Chemie International Edition, 2022, 61(15): e202201017. |
28 | Chang M, Zhao Y, Liu D, et al. Methane-trapping metal-organic frameworks with an aliphatic ligand for efficient CH4/N2 separation[J]. Sustainable Energy & Fuels, 2020, 4(1): 138-142. |
29 | Li L, Yang L, Wang J, et al. Highly efficient separation of methane from nitrogen on a squarate-based metal-organic framework[J]. AIChE Journal, 2018, 64(10): 3681-3689. |
30 | Huang Z, Hu P, Liu J, et al. Enhancing CH4/N2 separation performance within aluminum-based metal-organic frameworks: influence of the pore structure and linker polarity[J]. Separation and Purification Technology, 2022, 286: 120446. |
31 | Chang M, Ren J, Yang Q, et al. A robust calcium-based microporous metal-organic framework for efficient CH4/N2 separation[J]. Chemical Engineering Journal, 2021, 408: 127294-127301. |
32 | Chang M, Zhao Y, Yang Q, et al. Microporous metal-organic frameworks with hydrophilic and hydrophobic pores for efficient separation of CH4/N2 mixture[J]. ACS Omega, 2019, 4(11): 14511-14516. |
33 | Niu Z, Cui X, Pham T, et al. A metal-organic framework based methane nano-trap for the capture of coal-mine methane[J]. Angewandte Chemie International Edition, 2019, 58(30): 10138-10141. |
34 | Hu J, Sun T, Liu X, et al. Separation of CH4/N2 mixtures in metal-organic frameworks with 1D micro-channels[J]. RSC Advances, 2016, 6(68): 64039-64046. |
35 | Kim T H, Kim S Y, Yoon T U, et al. Improved methane/nitrogen separation properties of zirconium-based metal-organic framework by incorporating highly polarizable bromine atoms[J]. Chemical Engineering Journal, 2020, 399: 125717. |
36 | Chen Y, Wu H, Yuan Y, et al. Highly rapid mechanochemical synthesis of a pillar-layer metal-organic framework for efficient CH4/N2 separation[J]. Chemical Engineering Journal, 2020, 385:123836. |
37 | Tu S, Yu L, Lin D, et al. Robust nickel-based metal-organic framework for highly efficient methane purification and capture[J]. ACS Applied Materials Interfaces, 2022, 14(3): 4242-4250. |
38 | Ren X, Sun T, Hu J, et al. Highly enhanced selectivity for the separation of CH4 over N2 on two ultra-microporous frameworks with multiple coordination modes[J]. Microporous and Mesoporous Materials, 2014, 186: 137-145. |
39 | Eyer S, Stadie N P, Borgschulte A, et al. Methane preconcentration by adsorption: a methodology for materials and conditions selection[J]. Adsorption, 2014, 20(5/6): 657-666. |
40 | Wang X, Li L, Yang J, et al. CO2/CH4 and CH4/N2 separation on isomeric metal organic frameworks[J]. Chinese Journal of Chemical Engineering, 2016, 24(12): 1687-1694. |
41 | Dipeneu S, Fengjia, Deng S G. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A[J]. Environmental Science Technology, 2010, 44(5): 1820-1826. |
42 | Li L, Yang J, Li J, et al. Separation of CO2 /CH4 and CH4 /N2 mixtures by M/DOBDC: a detailed dynamic comparison with MIL-100(Cr) and activated carbon[J]. Microporous and Mesoporous Materials, 2014, 198: 236-246. |
43 | Wang Q M, Martin B, Lau M L, et al. Metallo-organic molecular sieve for gas separation and purification[J]. Microporous and Mesoporous Materials, 2002, 55: 217-230. |
44 | Yang J, Wang Y, Li L, et al. Protection of open-metal V(Ⅲ) sites and their associated CO2/CH4/N2/O2/H2O adsorption properties in mesoporous V-MOFs[J]. Journal of Colloid Interface Science, 2015, 456: 197-205. |
45 | Jaramillo D E, Reed D A, Jiang H Z H, et al. Selective nitrogen adsorption via backbonding in a metal-organic framework with exposed vanadium sites[J]. Nature Materials, 2020, 19(5): 517-521. |
46 | Pillai R S, Yoon J W, Lee S J, et al. N2 capture performances of the hybrid porous MIL-101(Cr): from prediction toward experimental testing[J]. The Journal of Physical Chemistry C, 2017, 121(40): 22130-22138. |
47 | Yoon J W, Chang H, Lee S J, et al. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites[J]. Nature Materials, 2017, 16(5): 526-531. |
48 | Zhang F, Li K, Chen J, et al. Efficient N2/CH4 separation in a stable metal-organic framework with high density of open Cr sites[J]. Separation and Purification Technology, 2022, 281: 119951. |
49 | Möllmer J, Lange M, Möller A, et al. Pure and mixed gas adsorption of CH4 and N2 on the metal-organic framework Basolite® A100 and a novel copper-based 1,2,4-triazolyl isophthalate MOF[J]. Journal of Materials Chemistry, 2012, 22(20): 10274-10286. |
50 | Wu X, Yuan B, Bao Z, et al. Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal-organic framework[J]. Journal of Colloid Interface Science, 2014, 430: 78-84. |
51 | Li J R, Li M, Zhou P X, et al. ROD-8, a rod MOF with a pyrene-cored tetracarboxylate linker: framework disorder, derived nets and selective gas adsorption[J]. CrystEngComm, 2014, 16(28): 6291-6295. |
52 | Lv D, Wu Y, Chen J, et al. Improving CH4/N2 selectivity within isomeric Al‐based MOFs for the highly selective capture of coal‐mine methane[J]. AIChE Journal, 2020, 66(9): e16287. |
53 | Wu Y, Yuan D, He D, et al. Decorated traditional zeolites with subunits of metal-organic frameworks for CH4 /N2 separation[J]. Angewandte Chemie International Edition, 2019, 58(30): 10241-10244. |
54 | Qu Z G, Wang H, Zhang W. Highly efficient adsorbent design using a Cu-BTC/CuO/carbon fiber paper composite for high CH4/N2 selectivity[J]. RSC Advances, 2017, 7(23): 14206-14218. |
55 | Buhre W, Disma N, Hendrickx J, et al. European society of anaesthesiology task force on nitrous oxide: a narrative review of its role in clinical practice[J]. British Journal of Anaesthesia, 2019, 122(5): 587-604. |
56 | Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477-1504. |
57 | Mercuri G, Moroni M, Galli S, et al. Temperature-dependent nitrous oxide/carbon dioxide preferential adsorption in a thiazolium-functionalized NU-1000 metal-organic framework[J]. ACS Applied Materials Interfaces, 2021, 13(49): 58982-58993. |
58 | Ma L, Zhang F, Li K, et al. Improved N2O capture performance of chromium terephthalate MIL-101 via substituent engineering[J]. Journal of Solid State Chemistry, 2022, 309: 122951. |
59 | Yang J, Du B, Liu J, et al. MIL-100Cr with open Cr sites for a record N2O capture[J]. Chemical Communications, 2018, 54(100): 14061-14064. |
60 | Wang L, Li Y, Wang Y, et al. Research on CO2-N2O separation using flexible metal organic frameworks[J]. Separation and Purification Technology, 2020, 251: 117311. |
61 | Chen D L, Wang N, Wang F F, et al. Utilizing the gate-opening mechanism in ZIF-7 for adsorption discrimination between N2O and CO2 [J]. The Journal of Physical Chemistry C, 2014, 118(31): 17831-17837. |
62 | Wang L, Zhang F, Wang C, et al. Ethylenediamine-functionalized metal organic frameworks MIL-100(Cr) for efficient CO2/N2O separation[J]. Separation and Purification Technology, 2020, 235: 116219. |
63 | Zhang X, Chen W, Shi W, et al. Highly selective sorption of CO2 and N2O and strong gas-framework interactions in a nickel(Ⅱ) organic material[J]. Journal of Materials Chemistry A, 2016, 4(41): 16198-16204. |
64 | Wang L, Zhang F, Yang J, et al. The efficient separation of N2O/CO2 using unsaturated Fe2+ sites in MIL-100(Fe)[J]. Chemical Communications, 2021, 57(54): 6636-6639. |
65 | Denysenko D, Jelic J, Magdysyuk O V, et al. Elucidating Lewis acidity of metal sites in MFU-4l metal-organic frameworks: N2O and CO2 adsorption in MFU-4l, CuI-MFU-4l and Li-MFU-4l[J]. Microporous and Mesoporous Materials, 2015, 216: 146-150. |
66 | Pan B, Wang G, Shi H, et al. Green gas for grid as an eco-friendly alternative insulation gas to SF6: a review[J]. Applied Sciences, 2020, 10(7): 2526-2539. |
67 | Motkuri R K, Annapureddy H V, Vijaykumar M, et al. Fluorocarbon adsorption in hierarchical porous frameworks[J]. Nature Communications, 2014, 5: 4368-4373. |
68 | Annapureddy H V, Nune S K, Motkuri R K, et al. A combined experimental and computational study on the stability of nanofluids containing metal organic frameworks[J]. Journal Physical Chemistry B, 2015, 119(29): 8992-8899. |
69 | Wanigarathna D, Gao J, Liu B. Fluorocarbon separation in a thermally robust zirconium carboxylate metal-organic framework[J]. Chemistry—An Asian Journal, 2018, 13(8): 977-981. |
70 | Chen T H, Popov I, Kaveevivitchai W, et al. Mesoporous fluorinated metal-organic frameworks with exceptional adsorption of fluorocarbons and CFCs[J]. Angewandte Chemie International Edition, 2015, 54(47): 13902-13906. |
71 | Xie J, Sun F, Wang C, et al. Stability and hydrocarbon/fluorocarbon sorption of a metal-organic framework with fluorinated channels[J]. Materials (Basel), 2016, 9(5): 327-332. |
72 | Wang H, Yu L, Lin Y, et al. Adsorption of fluorocarbons and chlorocarbons by highly porous and robust fluorinated zirconium metal-organic frameworks[J]. Inorganic Chemistry, 2020, 59(7): 4167-4171. |
73 | Lee H M, Chang M B, Wu K Y. Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas[J]. Journal of the Air & Waste Management Association, 2004, 54(8): 960-970. |
74 | Maiss M, Brenninkmeijer C A M. Atmospheric SF6: trends, sources, and prospects[J]. Environmental Science and Technology, 1998, 32(20): 3077-3086. |
75 | Seeger M. Perspectives on research on high voltage gas circuit breakers[J]. Plasma Chemistry and Plasma Processing, 2014, 35(3): 527-541. |
76 | Montzka S A, Dlugokencky E J, Butler J H. Non-CO2 greenhouse gases and climate change[J]. Nature, 2011, 476(7358): 43-50. |
77 | Yang M, Chang M, Yan T, et al. A nickel-based metal-organic framework for efficient SF6/N2 separation with record SF6 uptake and SF6/N2 selectivity[J]. Separation and Purification Technology, 2022, 295: 121340. |
78 | Wang T, Chang M, Yan T, et al. Calcium-based metal-organic framework for efficient capture of sulfur hexafluoride at low concentrations[J]. Industrial & Engineering Chemistry Research, 2021, 60(16): 5976-5983. |
79 | Wang S M, Mu X T, Liu H R, et al. Pore-structure control in metal-organic frameworks (MOFs) for capture of the greenhouse gas SF6 with record separation[J]. Angewandte Chemie International Edition, 2022, 61(33): e202207066. |
80 | Kim M B, Lee S J, Lee C Y, et al. High SF6 selectivities and capacities in isostructural metal-organic frameworks with proper pore sizes and highly dense unsaturated metal sites[J]. Microporous and Mesoporous Materials, 2014, 190: 356-361. |
81 | Ren J, Chang M, Zeng W, et al. Computer-aided discovery of MOFs with calixarene-analogous microenvironment for exceptional SF6 capture[J]. Chemistry of Materials, 2021, 33(13): 5108-5114. |
82 | Åhlén M, Kapaca E, Hedbom D, et al. Gas sorption properties and kinetics of porous bismuth-based metal-organic frameworks and the selective CO2 and SF6 sorption on a new bismuth trimesate-based structure UU-200[J]. Microporous and Mesoporous Materials, 2022, 329: 111548. |
83 | Kim M B, Kim T H, Yoon T U, et al. Efficient SF6/N2 separation at high pressures using a zirconium-based mesoporous metal-organic framework[J]. Journal of Industrial and Engineering Chemistry, 2020, 84: 179-184. |
84 | Senkovska I, Barea E, Navarro J, et al. Adsorptive capturing and storing greenhouse gases such as sulfur hexafluoride and carbon tetrafluoride using metal-organic frameworks[J]. Microporous and Mesoporous Materials, 2012, 156: 115-120. |
85 | Chowdhury P, Bikkina C, Meister D, et al. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes[J]. Microporous and Mesoporous Materials, 2009, 117(1/2): 406-413. |
86 | Chowdhury P, Bikkina C, Sasidhar G. Gas adsorption properties of the chromium-based metal organic framework MIL-101[J]. The Journal of Physical Chemistry C, 2009, 113: 6616-6621. |
87 | Cha J, Ga S, Lee S J, et al. Integrated material and process evaluation of metal-organic frameworks database for energy-efficient SF6/N2 separation[J]. Chemical Engineering Journal, 2021, 426: 131787. |
[1] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[2] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[3] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[4] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[5] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[6] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[7] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[8] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[9] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[10] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[11] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[12] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[13] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[14] | Jiahao JIANG, Xiaole HUANG, Jiyun REN, Zhengrong ZHU, Lei DENG, Defu CHE. Qualitative and quantitative study on Pb2+ adsorption by biochar in solution [J]. CIESC Journal, 2023, 74(2): 830-842. |
[15] | Xiaowan PENG, Xiaonan GUO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry [J]. CIESC Journal, 2023, 74(2): 784-795. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 521
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 537
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||