CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 807-817.DOI: 10.11949/0438-1157.20221430
• Process system engineering • Previous Articles Next Articles
Kenian SHI(), Jingyuan ZHENG, Yu QIAN, Siyu YANG()
Received:
2022-11-01
Revised:
2022-12-12
Online:
2023-03-21
Published:
2023-02-05
Contact:
Siyu YANG
通讯作者:
杨思宇
作者简介:
史克年(1998—),男,硕士研究生,202020123528@mail.scut.edu.cn
基金资助:
CLC Number:
Kenian SHI, Jingyuan ZHENG, Yu QIAN, Siyu YANG. Two-stage stochastic programming of steam power system based on Markov chain[J]. CIESC Journal, 2023, 74(2): 807-817.
史克年, 郑景元, 钱宇, 杨思宇. 基于马尔可夫链的蒸汽动力系统两阶段随机规划[J]. 化工学报, 2023, 74(2): 807-817.
Add to citation manager EndNote|Ris|BibTeX
工况 | 时长/h | 概率 |
---|---|---|
合计 | 8784 | 1.000 |
0 | 483 | 0.055 |
1 | 535 | 0.060 |
2 | 2153 | 0.240 |
3 | 1743 | 0.200 |
4 | 3302 | 0.380 |
5 | 568 | 0.065 |
Table 1 Distribution of each working condition
工况 | 时长/h | 概率 |
---|---|---|
合计 | 8784 | 1.000 |
0 | 483 | 0.055 |
1 | 535 | 0.060 |
2 | 2153 | 0.240 |
3 | 1743 | 0.200 |
4 | 3302 | 0.380 |
5 | 568 | 0.065 |
蒸汽等级 | 稳定性/% | MAPE/% | RMSE |
---|---|---|---|
8.8 MPa | 87.1 | 1.62 | 7.25 |
5.5 MPa | 79.4 | 3.79 | 15.93 |
2.0 MPa | 76.8 | 6.83 | 16.23 |
Table 2 Each steam evaluation index
蒸汽等级 | 稳定性/% | MAPE/% | RMSE |
---|---|---|---|
8.8 MPa | 87.1 | 1.62 | 7.25 |
5.5 MPa | 79.4 | 3.79 | 15.93 |
2.0 MPa | 76.8 | 6.83 | 16.23 |
Boilers | Maximum load / (t/h) | Minimum load / (t/h) | Start-stop cost/CNY | Depreciation cost/(CNY/h) |
---|---|---|---|---|
B1—B4 | 470 | 330 | 105 | 150 |
Table 3 Parameters of boilers
Boilers | Maximum load / (t/h) | Minimum load / (t/h) | Start-stop cost/CNY | Depreciation cost/(CNY/h) |
---|---|---|---|---|
B1—B4 | 470 | 330 | 105 | 150 |
Turbines | Rated power/MW | Maximum admission flow/(t/h) | Maximum extraction flow/(t/h) | Cost/(CNY/h) | ||
---|---|---|---|---|---|---|
First | Second | Start-stop | Depreciation | |||
CN100T | 112 | 500 | 45 | 50 | 105 | 400 |
CB30T | 33 | 500 | 25 | 25 | 105 | 160 |
Table 4 Parameters of turbines
Turbines | Rated power/MW | Maximum admission flow/(t/h) | Maximum extraction flow/(t/h) | Cost/(CNY/h) | ||
---|---|---|---|---|---|---|
First | Second | Start-stop | Depreciation | |||
CN100T | 112 | 500 | 45 | 50 | 105 | 400 |
CB30T | 33 | 500 | 25 | 25 | 105 | 160 |
Method | Coal consumption/(t/h) | Water consumption/(t/h) |
---|---|---|
before optimization | 270.39 | 1094.84 |
this paper optimization | 263.49 | 1053.03 |
robust optimization | 268.42 | 1084.60 |
stochastic programming | 262.25 | 1044.19 |
Table 6 Resource consumption of each optimization method before and after optimization
Method | Coal consumption/(t/h) | Water consumption/(t/h) |
---|---|---|
before optimization | 270.39 | 1094.84 |
this paper optimization | 263.49 | 1053.03 |
robust optimization | 268.42 | 1084.60 |
stochastic programming | 262.25 | 1044.19 |
Item | Cost/(104 CNY) | |||
---|---|---|---|---|
Before optimization | This paper optimization | Robust optimization | Stochastic programming | |
coal | 5871 | 5721 | 5828 | 5694 |
water | 867 | 834 | 859 | 827 |
purchased electricity | 0 | 0 | 0 | 0 |
purchased steam | 0 | 0 | 0 | 0 |
the total cost | 6738 | 6555 | 6687 | 6521 |
cost saving | — | 183 | 51 | 217 |
Table 7 Cost of each optimization method before and after optimization
Item | Cost/(104 CNY) | |||
---|---|---|---|---|
Before optimization | This paper optimization | Robust optimization | Stochastic programming | |
coal | 5871 | 5721 | 5828 | 5694 |
water | 867 | 834 | 859 | 827 |
purchased electricity | 0 | 0 | 0 | 0 |
purchased steam | 0 | 0 | 0 | 0 |
the total cost | 6738 | 6555 | 6687 | 6521 |
cost saving | — | 183 | 51 | 217 |
1 | 徐乐, 陈颖, 罗向龙. 考虑减排措施的蒸汽动力系统结构优选[J]. 热科学与技术, 2011, 10(4): 371-376. |
Xu L, Chen Y, Luo X L. Structure optimization of steam power system with emission reduction technology concerns[J]. Journal of Thermal Science and Technology, 2011, 10(4): 371-376. | |
2 | 李帅, 姜晓滨, 贺高红, 等. 蒸汽动力系统柔性设计和多目标优化研究进展[J]. 化工进展, 2017, 36(6): 1989-1996. |
Li S, Jiang X B, He G H, et al. Research progress for flexible design and multi-objective optimization of steam power network[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 1989-1996. | |
3 | 盖丽梅, 孙力, 刘畅, 等. 基于带补偿随机规划的蒸汽动力系统优化设计[J]. 化工学报, 2014, 65(11): 4509-4516. |
Gai L M, Sun L, Liu C, et al. Steam power system optimization design based on stochastic programming with recourse[J]. CIESC Journal, 2014, 65(11): 4509-4516. | |
4 | 李晖, 孙力, 贺高红. 考虑不确定汽电需求的蒸汽动力系统优化设计[J]. 化工学报, 2013, 64(1): 318-325. |
Li H, Sun L, He G H. Design and optimization of steam power system with uncertain steam and power demands[J]. CIESC Journal, 2013, 64(1): 318-325. | |
5 | 罗向龙, 陈颖, 华贲. 参数不确定性条件下蒸汽动力系统的运行优化[J]. 石油学报(石油加工), 2009, 25(2): 233-240. |
Luo X L, Chen Y, Hua B. Operational planning optimization of utility system under parameters uncertainty[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2009, 25(2):233-240. | |
6 | Alipour M. A multi-follower bilevel stochastic programming approach for energy management of combined heat and power micro-grids[J]. Energy, 2018, 149: 135-146. |
7 | Qian Q M, Lin H, He C, et al. Sustainable retrofit of petrochemical energy systems under multiple uncertainties using the stochastic optimization method[J]. Computers & Chemical Engineering, 2021, 151: 107374. |
8 | Maurovich-Horvat L, Rocha P, Siddiqui A S. Optimal operation of combined heat and power under uncertainty and risk aversion[J]. Energy and Buildings, 2016, 110: 415-425. |
9 | Saeedi M. Robust optimization based optimal chiller loading under cooling demand uncertainty[J]. Applied Thermal Engineering, 2019, 148: 1081-1091. |
10 | Verástegui F, Lorca Á, Olivares D E, et al. An adaptive robust optimization model for power systems planning with operational uncertainty[J]. IEEE Transactions on Power Systems, 2019, 34(6): 4606-4616. |
11 | Shen F, Zhao L, Du W, et al. Data-driven stochastic robust optimization for industrial energy system considering renewable energy penetration[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(11): 3690-3703. |
12 | Lence B, Moosavian N, Daliri H. Fuzzy programming approach for multiobjective optimization of water distribution systems[J]. Journal of Water Resources Planning and Management, 2017, 143: 04017020. |
13 | Singh A. Managing the uncertainty problems of municipal solid waste disposal[J]. Journal of Environmental Management, 2019, 240: 259-265. |
14 | 盖丽梅. 基于随机规划的不确定蒸汽动力系统优化设计[D]. 大连: 大连理工大学, 2015. |
Gai L M. Optimal design of uncertain steam power system based on stochastic programming[D]. Dalian: Dalian University of Technology, 2015. | |
15 | Sun L, Gai L M, Smith R, et al. Site utility system optimization with operation adjustment under uncertainty[J]. Applied Energy, 2017, 186: 450-456. |
16 | Velasco-Garcia P. Utility systems operation: optimisation-based decision making[J]. Applied Thermal Engineering, 2011, 31(16): 3196-3205. |
17 | Xie Y L, Huang G H, Li W, et al. An inexact two-stage stochastic programming model for water resources management in Nansihu Lake Basin, China[J]. Journal of Environmental Management, 2013, 127: 188-205. |
18 | Niu T, Yin H C, Feng E M. An interval two-stage robust stochastic programming approach for steam power systems design and operation optimization under complex uncertainties[J]. Chemical Engineering Science, 2022, 253: 117533. |
19 | Shen F F, Zhao L, Du W L, et al. Large-scale industrial energy systems optimization under uncertainty: a data-driven robust optimization approach[J]. Applied Energy, 2020, 259: 114199. |
20 | Shen F, Zhao L, Wang M, et al. Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty[J]. Applied Energy, 2022, 307: 118148. |
21 | Ning C, You F. A data‐driven multistage adaptive robust optimization framework for planning and scheduling under uncertainty[J]. AIChE Journal, 2017, 63(10): 4343-4369. |
22 | 廖祖维, 宣吉, 荣冈, 等. 基于模糊规划的石化企业蒸汽动力系统调度优化[J]. 浙江大学学报(工学版), 2011, 45(4): 621-626, 694. |
Liao Z W, Xuan J, Rong G, et al. Fuzzy programming based scheduling of steam power system in petrochemical complex[J]. Journal of Zhejiang University (Engineering Science), 2011, 45(4): 621-626, 694. | |
23 | Nie S, Huang C Z, Huang G H, et al. Planning renewable energy in electric power system for sustainable development under uncertainty—a case study of Beijing[J]. Applied Energy, 2016, 162: 772-786. |
24 | Verma S M, Reddy V, Verma K, et al. Markov models based short term forecasting of wind speed for estimating day-ahead wind power[C]//2018 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS). Chennai, India IEEE, 2018: 31-35. |
25 | Yang X Y, Ma X, Kang N, et al. Probability interval prediction of wind power based on KDE method with rough sets and weighted Markov chain[J]. IEEE Access, 2018, 6: 51556-51565. |
26 | Sinaga K P, Yang M S. Unsupervised K-means clustering algorithm[J]. IEEE Access, 2020, 8: 80716-80727. |
27 | Balzter H. Markov chain models for vegetation dynamics[J]. Ecological Modelling, 2000, 126(2/3): 139-154. |
28 | Logofet D O. The mathematics of Markov models: what Markov chains can really predict in forest successions[J]. Ecological Modelling, 2000, 126(2/3): 285-298. |
29 | Lee D, Baldick R. Load and wind power scenario generation through the generalized dynamic factor model[J]. IEEE Transactions on Power Systems, 2017, 32(1): 400-410. |
30 | Yuan X H, Ji B, Zhang S Q, et al. An improved artificial physical optimization algorithm for dynamic dispatch of generators with valve-point effects and wind power[J]. Energy Conversion and Management, 2014, 82: 92-105. |
31 | Wu L, Shahidehpour M, Li T. Stochastic security-constrained unit commitment[J]. IEEE Transactions on Power Systems, 2007, 22(2): 800-811. |
32 | Dupačová J, Gröwe-Kuska N, Römisch W. Scenario reduction in stochastic programming[J]. Mathematical Programming, 2003, 95(3): 493-511. |
33 | Chen Z P. Scenario tree reduction methods through clustering nodes[J]. Computers & Chemical Engineering, 2018, 109: 96-111. |
[1] | YU Xuefei, ZHANG Shuai, LIU Linlin, DU Jian. Simultaneous integration and scheduling of power plant and carbon capture device [J]. CIESC Journal, 2021, 72(3): 1447-1456. |
[2] | ZENG Shuai, SHI Zhijun, WANG Peng, ZHANG Guolei, SUN Baozhi, QUE Chenyu, MA Biao, LI Jian. Dynamic simulation of control for main steam pressure of marine steam power system [J]. CIESC Journal, 2016, 67(S1): 334-340. |
[3] | ZHANG Pengfei, ZHAO Hao, RONG Gang, FENG Yiping. Multi-objective optimization for steam power system considering production cost and environmental cost [J]. CIESC Journal, 2016, 67(3): 715-723. |
[4] | LIU Chang, SUN Li, HE Gaohong, GAI Limei. Boiler system design based on stochastic programming under uncertain steam demand and equipment failure [J]. CIESC Journal, 2014, 65(9): 3512-3518. |
[5] | Liu Chang, Sun Li, He Gaohong, Gai Limei. Boiler system design based on the approach of stochastic programming under uncertain steam demand and equipment failure [J]. CIESC Journal, 2014, 65(9): 0-0. |
[6] | GAI Limei, SUN Li, LIU Chang, HE Gaohong. Steam power system optimization design based on stochastic programming with recourse [J]. CIESC Journal, 2014, 65(11): 4509-4516. |
[7] | LI Hui, SUN Li, HE Gaohong. Design and optimization of steam power system with uncertain steam and power demands [J]. CIESC Journal, 2013, 64(1): 318-325. |
[8] | WANG Zhuofeng, DUN Jian, LU Hongbo, GENG Jun, FENG Xiao. Critical economic point of industrial turbines [J]. CIESC Journal, 2012, 63(11): 3579-3584. |
[9] | YANG Chen, GAO Siyun. Inverse analysis to estimate thermal conductivity components of orthotropic medium [J]. CIESC Journal, 2007, 58(6): 1378-1384. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||