CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 796-806.DOI: 10.11949/0438-1157.20221352
• Process system engineering • Previous Articles Next Articles
Haiou YUAN1(), Fangjun YE1(), Shuo ZHANG1, Yiqing LUO1,2,3(), Xigang YUAN1,2,3
Received:
2022-10-12
Revised:
2022-12-07
Online:
2023-03-21
Published:
2023-02-05
Contact:
Yiqing LUO
袁海鸥1(), 叶方俊1(), 张硕1, 罗祎青1,2,3(), 袁希钢1,2,3
通讯作者:
罗祎青
作者简介:
袁海鸥(1997—),女,硕士研究生,haiou_yuan@tju.edu.cn基金资助:
CLC Number:
Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers[J]. CIESC Journal, 2023, 74(2): 796-806.
袁海鸥, 叶方俊, 张硕, 罗祎青, 袁希钢. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Example of a nonsharp-split distillation sequence for a five-component mixture and the corresponding distillation configuration with N-1 columns
Separation task | p/MPa | R | ξLK | ξHK | V/(kmol/h) | TD/K | TB/K | Qc/(GJ/h) | Qr/(GJ/h) | |
---|---|---|---|---|---|---|---|---|---|---|
1 | ABC|BCDE | 0.10 | 1.10 | 0.980 | 0.020 | 486.15 | 355.52 | 379.05 | 19.320 | 20.346 |
2 | AB|BC | 0.10 | 1.26 | 0.980 | 0.020 | 375.51 | 352.58 | — | 14.670 | — |
3 | BCD|E | 0.40 | 1.56 | 0.9800 | 0.020 | 498.25 | 413.14 | 441.18 | 18.630 | 18.848 |
4 | A|B | 0.38 | 9.30 | 0.980 | 0.020 | 1221.85 | 389.07 | 403.11 | 42.964 | 30.007 |
5 | BC|CD | 0.10 | 5.65 | 0.997 | 0.005 | 375.51 | — | 377.45 | — | 15.610 |
6 | B|C | 0.38 | 8.52 | 0.980 | 0.020 | 343.49 | — | — | — | — |
7 | C|D | 0.38 | 2.90 | 0.980 | 0.020 | 343.49 | — | 428.15 | — | 12.755 |
{IHE}:{0, 1, 0}:2-5 (0)、4-6 (1)、6-7 (0) TAC:376595.35 USD/a | ||||||||||
年度设备费:81384.51 USD/a;年度操作费:295210.84 USD/a | ||||||||||
中间组分回收率:ABC|BCDE:ξB = 0.8154、ξC = 0.2653;AB|BC:ξB = 0.7351;BC|CD:ξC = 0.3102 能量匹配:20.346 GJ/h (4→1), 15.610 GJ/h (4→5), 18.630 GJ/h (3→4) |
Table 3 Operating parameters of the TAC minimum IHE-HIDS in case 1
Separation task | p/MPa | R | ξLK | ξHK | V/(kmol/h) | TD/K | TB/K | Qc/(GJ/h) | Qr/(GJ/h) | |
---|---|---|---|---|---|---|---|---|---|---|
1 | ABC|BCDE | 0.10 | 1.10 | 0.980 | 0.020 | 486.15 | 355.52 | 379.05 | 19.320 | 20.346 |
2 | AB|BC | 0.10 | 1.26 | 0.980 | 0.020 | 375.51 | 352.58 | — | 14.670 | — |
3 | BCD|E | 0.40 | 1.56 | 0.9800 | 0.020 | 498.25 | 413.14 | 441.18 | 18.630 | 18.848 |
4 | A|B | 0.38 | 9.30 | 0.980 | 0.020 | 1221.85 | 389.07 | 403.11 | 42.964 | 30.007 |
5 | BC|CD | 0.10 | 5.65 | 0.997 | 0.005 | 375.51 | — | 377.45 | — | 15.610 |
6 | B|C | 0.38 | 8.52 | 0.980 | 0.020 | 343.49 | — | — | — | — |
7 | C|D | 0.38 | 2.90 | 0.980 | 0.020 | 343.49 | — | 428.15 | — | 12.755 |
{IHE}:{0, 1, 0}:2-5 (0)、4-6 (1)、6-7 (0) TAC:376595.35 USD/a | ||||||||||
年度设备费:81384.51 USD/a;年度操作费:295210.84 USD/a | ||||||||||
中间组分回收率:ABC|BCDE:ξB = 0.8154、ξC = 0.2653;AB|BC:ξB = 0.7351;BC|CD:ξC = 0.3102 能量匹配:20.346 GJ/h (4→1), 15.610 GJ/h (4→5), 18.630 GJ/h (3→4) |
合成方案 | TAC/(USD/a) | 设备费/(USD/a) | 操作费/(USD/a) |
---|---|---|---|
IHE-HIDS | 376595.35 | 81384.51 | 295210.84 |
HITCDS | 379231.29 | 63343.43 | 315887.86 |
Table 4 The comparison of TACs, capital costs and operate costs of the TAC minimum IHE-HIDS and HITCDS in case 1
合成方案 | TAC/(USD/a) | 设备费/(USD/a) | 操作费/(USD/a) |
---|---|---|---|
IHE-HIDS | 376595.35 | 81384.51 | 295210.84 |
HITCDS | 379231.29 | 63343.43 | 315887.86 |
Separation task | p/MPa | R | ξLK | ξHK | V/(kmol/h) | TD/K | TB/K | Qc/(GJ/h) | Qr/(GJ/h) | |
---|---|---|---|---|---|---|---|---|---|---|
1 | ABCD|BCDE | 1.00 | 0.66 | 0.980 | 0.020 | 276.54 | 331.76 | 375.59 | 4.591 | 5.026 |
2 | A|BCD | 0.82 | 2.33 | 0.980 | 0.020 | 148.57 | 293.69 | — | 2.242 | — |
3 | BCD|CDE | 0.82 | 1.25 | 0.980 | 0.020 | 498.86 | 341.94 | 380.63 | 6.155 | 9.686 |
4 | B|CD | 0.61 | 6.96 | 0.980 | 0.020 | 1081.12 | 319.10 | 342.73 | 19.070 | 10.909 |
5 | CD|DE | 0.61 | 4.32 | 0.999 | 0.020 | 477.92 | — | 374.03 | — | 9.910 |
6 | C|D | 1.00 | 1.33 | 0.980 | 0.020 | 522.23 | 353.86 | — | 8.782 | — |
7 | D|E | 1.00 | 13.97 | 0.980 | 0.020 | 2000.57 | 391.05 | 405.00 | 26.789 | 36.626 |
{IHE}:{1, 1, 1}:2-3 (1)、4-5 (1)、6-7 (1) TAC:4924023.13 USD/a | ||||||||||
年度设备费:827841.36 USD/a;年度操作费:4096181.78 USD/a | ||||||||||
中间组分回收率:ABCD|BCDE:ξB = 0.3668、ξC = 0.2490、ξD = 0.0507;BCD|CDE:ξC = 0.6582、ξD = 0.1055;CD|DE:ξD = 0.1547 能量匹配:8.782 GJ/h (6→4), 5.026 GJ/h (7→1), 9.686 GJ/h (7→3) , 9.910 GJ/h (7→5) , 2.127 GJ/h (7→4) |
Table 6 Operating parameters of the TAC minimum IHE-HIDS in case 2
Separation task | p/MPa | R | ξLK | ξHK | V/(kmol/h) | TD/K | TB/K | Qc/(GJ/h) | Qr/(GJ/h) | |
---|---|---|---|---|---|---|---|---|---|---|
1 | ABCD|BCDE | 1.00 | 0.66 | 0.980 | 0.020 | 276.54 | 331.76 | 375.59 | 4.591 | 5.026 |
2 | A|BCD | 0.82 | 2.33 | 0.980 | 0.020 | 148.57 | 293.69 | — | 2.242 | — |
3 | BCD|CDE | 0.82 | 1.25 | 0.980 | 0.020 | 498.86 | 341.94 | 380.63 | 6.155 | 9.686 |
4 | B|CD | 0.61 | 6.96 | 0.980 | 0.020 | 1081.12 | 319.10 | 342.73 | 19.070 | 10.909 |
5 | CD|DE | 0.61 | 4.32 | 0.999 | 0.020 | 477.92 | — | 374.03 | — | 9.910 |
6 | C|D | 1.00 | 1.33 | 0.980 | 0.020 | 522.23 | 353.86 | — | 8.782 | — |
7 | D|E | 1.00 | 13.97 | 0.980 | 0.020 | 2000.57 | 391.05 | 405.00 | 26.789 | 36.626 |
{IHE}:{1, 1, 1}:2-3 (1)、4-5 (1)、6-7 (1) TAC:4924023.13 USD/a | ||||||||||
年度设备费:827841.36 USD/a;年度操作费:4096181.78 USD/a | ||||||||||
中间组分回收率:ABCD|BCDE:ξB = 0.3668、ξC = 0.2490、ξD = 0.0507;BCD|CDE:ξC = 0.6582、ξD = 0.1055;CD|DE:ξD = 0.1547 能量匹配:8.782 GJ/h (6→4), 5.026 GJ/h (7→1), 9.686 GJ/h (7→3) , 9.910 GJ/h (7→5) , 2.127 GJ/h (7→4) |
合成方案 | TAC/(USD/a) | 设备费/(USD/a) | 操作费/(USD/a) |
---|---|---|---|
IHE-HIDS | 4924023.13 | 827841.36 | 4096181.78 |
HITCDS | 5423006.58 | 683539.61 | 4739466.97 |
Table 7 The comparison of TACs, capital costs and operate costs of the TAC minimum IHE-HIDS and HITCDS in case 2
合成方案 | TAC/(USD/a) | 设备费/(USD/a) | 操作费/(USD/a) |
---|---|---|---|
IHE-HIDS | 4924023.13 | 827841.36 | 4096181.78 |
HITCDS | 5423006.58 | 683539.61 | 4739466.97 |
1 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
2 | Humphrey J L, Siebert A F. Separation technologies: an opportunity for energy savings[J]. Chemical Engineering Progress, 1992, 88(3): 32-41. |
3 | Jana A K. Heat integrated distillation operation[J]. Applied Energy, 2010, 87(5): 1477-1494. |
4 | Kiss A A. Towards energy efficient distillation technologies — making the right choice[J]. Energy, 2012, 47(1): 531-542. |
5 | Yeomans H, Grossmann I E. Disjunctive programming models for the optimal design of distillation columns and separation sequences[J]. Industrial & Engineering Chemistry Research, 2000, 39(6): 1637-1648. |
6 | Zhang L B, Linninger A A. Towards computer-aided separation synthesis[J]. AIChE Journal, 2006, 52(4): 1392-1409. |
7 | Wang F, Luo Y Q, Yuan X G. A formulation methodology for multicomponent distillation sequences based on stochastic optimization[J]. Chinese Journal of Chemical Engineering, 2016, 24(9): 1229-1235. |
8 | Leeson D. Simultaneous design of separation sequences and whole process energy integration[J]. Chemical Engineering Research and Design, 2017, 125: 166-180. |
9 | Zhang S. Simultaneous optimization of nonsharp distillation sequences and heat integration networks by simulated annealing algorithm[J]. Energy, 2018, 162: 1139-1157. |
10 | Caballero J A, Grossmann I E. Optimal synthesis of thermally coupled distillation sequences using a novel MILP approach[J]. Computers & Chemical Engineering, 2014, 61: 118-135. |
11 | Caballero J A, Grossmann I E. Structural considerations and modeling in the synthesis of heat-integrated-thermally coupled distillation sequences[J]. Industrial & Engineering Chemistry Research, 2006, 45(25): 8454-8474. |
12 | 陆恩锡, 李小玲, 吴震. 蒸馏过程中间再沸器与中间冷凝器[J]. 化学工程, 2008, 36(11): 74-78. |
Lu E X, Li X L, Wu Z. Inter-reboiler and inter-condenser in distillation[J]. Chemical Engineering (China), 2008, 36(11): 74-78. | |
13 | Alcántara-Avila J R, Tanaka M, Márquez C R, et al. Design of a multitask reactive distillation with intermediate heat exchangers for the production of silane and chlorosilane derivates[J]. Industrial & Engineering Chemistry Research, 2016, 55(41): 10968-10977. |
14 | Li Y D, Ye Q, Wang N G, et al. Energy-efficient extractive distillation combined with heat-integrated and intermediate reboilers for separating acetonitrile/isopropanol/water mixture[J]. Separation and Purification Technology, 2021, 262: 118343. |
15 | Agrawal R, Herron D M. Efficient use of an intermediate reboiler or condenser in a binary distillation[J]. AIChE Journal, 1998, 44(6): 1303-1315. |
16 | Agrawal R, Herron D M. Intermediate reboiler and condenser arrangement for binary distillation columns[J]. AIChE Journal, 1998, 44(6): 1316-1324. |
17 | Björn I N. Simulation and experimental study of intermediate heat exchange in a sieve tray distillation column[J]. Computers & Chemical Engineering, 2002, 26(4/5): 499-505. |
18 | 许良华, 陈大为, 罗祎青, 等. 带有中间热集成的精馏塔序列及其性能[J]. 化工学报, 2013, 64(7): 2503-2510. |
Xu L H, Chen D W, Luo Y Q, et al. Intermediate heat-integrated sequence of distillation columns and its energy-saving property[J]. CIESC Journal, 2013, 64(7): 2503-2510. | |
19 | An W Z, Yu F J, Dong F L, et al. Simulated annealing approach to the optimal synthesis of distillation column with intermediate heat exchangers[J]. Chinese Journal of Chemical Engineering, 2008, 16(1): 30-35. |
20 | Thompson R W, King C J. Systematic synthesis of separation schemes[J]. AIChE Journal, 1972, 18(5): 941-948. |
21 | Stephanopoulos G, Westerberg A W. Studies in process synthesis(Ⅱ): Evolutionary synthesis of optimal process flowsheets[J]. Chemical Engineering Science, 1976, 31(3): 195-204. |
22 | Qian Y, Lien K M. Rule based synthesis of separation systems by predictive best first search with rules represented as trapezoidal numbers[J]. Computers & Chemical Engineering, 1995, 19(11): 1185-1205. |
23 | Gooty R T. An MINLP formulation for the optimization of multicomponent distillation configurations[J]. Computers & Chemical Engineering, 2019, 125: 13-30. |
24 | Yeomans H. A systematic modeling framework of superstructure optimization in process synthesis[J]. Computers & Chemical Engineering, 1999, 23(6): 709-731. |
25 | Caballero J A. Design of distillation sequences: from conventional to fully thermally coupled distillation systems[J]. Computers & Chemical Engineering, 2004, 28(11): 2307-2329. |
26 | Caballero J A, Grossmann I E. Synthesis of complex thermally coupled distillation systems including divided wall columns[J]. AIChE Journal, 2013, 59(4): 1139-1159. |
27 | Biegler L T. Retrospective on optimization[J]. Computers & Chemical Engineering, 2004, 28(8): 1169-1192. |
28 | Shah V H, Agrawal R. A matrix method for multicomponent distillation sequences[J]. AIChE Journal, 2010, 56(7): 1759-1775. |
29 | Wang X H, Li Y G. Synthesis of multicomponent products separation sequences via stochastic GP method[J]. Industrial & Engineering Chemistry Research, 2008, 47(22): 8815-8822. |
30 | Jain S, Smith R, Kim J K. Synthesis of heat-integrated distillation sequence systems[J]. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43(4): 525-534. |
31 | Yuan X G, An W Z. Synthesis of heat integrated complex distillation systems via stochastic optimization approaches[J]. Chinese Journal of Chemical Engineering, 2002, 10(5): 495-507. |
32 | An W Z. A simulated annealing-based approach to the optimal synthesis of heat-integrated distillation sequences[J]. Computers & Chemical Engineering, 2009, 33(1): 199-212. |
33 | Zhang S. Synthesis of simultaneously heat integrated and thermally coupled nonsharp distillation sequences based on stochastic optimization[J]. Computers & Chemical Engineering, 2019, 127: 158-174. |
34 | Zhang S, Luo Y Q, Yuan X G. A novel stochastic optimization method to efficiently synthesize large-scale nonsharp distillation systems[J]. AIChE Journal, 2021, 67(9): e17328. |
35 | Giridhar A. Synthesis of distillation configurations ( Ⅰ ) : Characteristics of a good search space[J]. Computers & Chemical Engineering, 2010, 34(1): 73-83. |
36 | 安维中. 基于随机优化的复杂精馏系统综合研究[D]. 天津: 天津大学, 2003. |
An W Z. Synthesis of complex distillation systems based on stochastic optimization[D]. Tianjin: Tianjin University, 2003. | |
37 | Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of state calculations by fast computing machines[J]. The Journal of Chemical Physics, 1953, 21(6): 1087-1092. |
38 | Turton R, Bailie R C, Whiting W B, et al. Analysis, Synthesis and Design of Chemical Processes[M]. New York: Pearson Education, 2008: 231-266. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[3] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[4] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[5] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[6] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[7] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[8] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[9] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[10] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[11] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[12] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[13] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[14] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[15] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||