CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1447-1456.DOI: 10.11949/0438-1157.20201878
• Process system engineering • Previous Articles Next Articles
YU Xuefei(),ZHANG Shuai,LIU Linlin(),DU Jian
Received:
2020-12-20
Revised:
2020-12-27
Online:
2021-03-05
Published:
2021-03-05
Contact:
LIU Linlin
通讯作者:
刘琳琳
作者简介:
于雪菲(1997—),女,硕士研究生,基金资助:
CLC Number:
YU Xuefei, ZHANG Shuai, LIU Linlin, DU Jian. Simultaneous integration and scheduling of power plant and carbon capture device[J]. CIESC Journal, 2021, 72(3): 1447-1456.
于雪菲, 张帅, 刘琳琳, 都健. 电厂和碳捕集装置同步集成与调度优化研究[J]. 化工学报, 2021, 72(3): 1447-1456.
Add to citation manager EndNote|Ris|BibTeX
参数 | 含义与单位 | 数值 |
---|---|---|
CO2捕集相关运输和储存成本/(USD·t-1) | 7 | |
eG0 | 额定负荷下工作时发电厂的CO2排放强度/ (t·(MW·h)-1) | 0.76 |
gmin | 最小总发电量/MW | 300 |
LHV | 燃料能提供的最低热值/(kJ·kg-1) | 29270 |
L0,total | 初始状态下贫液罐内溶剂的体积/m3 | 7300 |
qstr | 解吸单位质量CO2所需能量/(kJ·t-1) | 3.84×106 |
R0,total | 初始状态下富液罐内溶剂的体积/m3 | 7300 |
额定负荷下工作时发电厂的产电效率 | 0.44 | |
发电厂与经销商的合同上电量定价/(USD·(MW·h)-1) | 51.7 | |
碳排放总量交易市场中碳信用价格/(USD·t-1) | 12.3 | |
发电厂一天内的额定碳排放量/t | 4373 | |
cQ | 燃料价格/(USD·kg-1) | 0.095 |
Table 1 Part of important design parameters
参数 | 含义与单位 | 数值 |
---|---|---|
CO2捕集相关运输和储存成本/(USD·t-1) | 7 | |
eG0 | 额定负荷下工作时发电厂的CO2排放强度/ (t·(MW·h)-1) | 0.76 |
gmin | 最小总发电量/MW | 300 |
LHV | 燃料能提供的最低热值/(kJ·kg-1) | 29270 |
L0,total | 初始状态下贫液罐内溶剂的体积/m3 | 7300 |
qstr | 解吸单位质量CO2所需能量/(kJ·t-1) | 3.84×106 |
R0,total | 初始状态下富液罐内溶剂的体积/m3 | 7300 |
额定负荷下工作时发电厂的产电效率 | 0.44 | |
发电厂与经销商的合同上电量定价/(USD·(MW·h)-1) | 51.7 | |
碳排放总量交易市场中碳信用价格/(USD·t-1) | 12.3 | |
发电厂一天内的额定碳排放量/t | 4373 | |
cQ | 燃料价格/(USD·kg-1) | 0.095 |
相关项目 | 结果/(USD·d-1) | |
---|---|---|
传统电厂 | 优化后电厂 | |
固定电量合同收益 | 496320 | 496320 |
电力市场收益 | 107855 | 146333 |
产电费用 | 387595 | 370005 |
碳市场收益 | 16058 | 12639 |
CO2运输和储存费用 | 45044 | 35351 |
日利润 | 187593 | 249936 |
Table 2 Calculation results
相关项目 | 结果/(USD·d-1) | |
---|---|---|
传统电厂 | 优化后电厂 | |
固定电量合同收益 | 496320 | 496320 |
电力市场收益 | 107855 | 146333 |
产电费用 | 387595 | 370005 |
碳市场收益 | 16058 | 12639 |
CO2运输和储存费用 | 45044 | 35351 |
日利润 | 187593 | 249936 |
1 | International Energy Agency. World Energy Outlook 2014[R]. 2014. |
2 | Wu X, Wang M H, Lee K Y. Flexible operation of supercritical coal-fired power plant integrated with solvent-based CO2 capture through collaborative predictive control[J]. Energy, 2020, 206: 118105. |
3 | Wu Y, Chen X P, Ma J L, et al. System integration optimization for coal-fired power plant with CO2 capture by Na2CO3 dry sorbents[J]. Energy, 2020, 211: 118554. |
4 | Liu M, Zhang X W, Yang K X, et al. Comparison and sensitivity analysis of the efficiency enhancements of coalfired power plants integrated with supercritical CO2 Brayton cycle and steam Rankine cycle[J]. Energy Conversion and Management, 2019, 198: 111918. |
5 | Zhang S, Zhuang Y, Liu L L, et al. Risk management optimization framework for the optimal deployment of carbon capture and storage system under uncertainty[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109280. |
6 | Zhang S, Liu L, Zhang L, et al. An optimization model for carbon capture utilization and storage supply chain: a case study in Northeastern China [J]. Applied Energy, 2018, 231: 194-206. |
7 | Mechleri E, Lawal A, Ramos A, et al. Process control strategies for flexible operation of post-combustion CO2 capture plants[J]. International Journal of Greenhouse Gas Control, 2017, 57: 14-25. |
8 | Zhang X L, Song P P, Jiang L. Performance evaluation of an integrated redesigned coal fired power plant with CO2 capture by calcium looping process[J]. Applied Thermal Engineering, 2020, 170: 115027. |
9 | Wang T L, Hovland J, Jens K J. Amine reclaiming technologies in post-combustion carbon dioxide capture[J]. Journal of Environmental Sciences, 2015, 27: 276-289. |
10 | Zantye M S, Arora A, Faruque Hasan M M. Operational power plant scheduling with flexible carbon capture: a multistage stochastic optimization approach[J]. Computers & Chemical Engineering, 2019, 130: 106544. |
11 | Tan R R, Ng D K S, Foo D C Y. Pinch analysis approach to carbon-constrained planning for sustainable power generation[J]. Journal of Clean Production, 2009, 17: 940-944. |
12 | Pękala Ł M, Tan R R, Foo D C Y, et al. Optimal energy planning models with carbon footprint constraints[J]. Applied Energy, 2010, 87: 1903-1910. |
13 | Lee J Y. A multi-period optimisation model for planning carbon sequestration retrofits in the electricity sector[J]. Applied Energy, 2017, 198: 12-20. |
14 | Abdilahi A M, Mustafa M W, Abujarad S Y, et al. Harnessing flexibility potential of flexible carbon capture power plants for future low carbon power systems: review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 3101-3110. |
15 | van der Wijk P C, Brouwer A S, van den Broek M, et al. Benefits of coal-fired power generation with flexible CCS in a future northwest European power system with large scale wind power[J]. International Journal of Greenhouse Gas Control, 2014, 28: 216-233. |
16 | Wang J Y, Sun T W, Zeng X L, et al. Feasibility of solar-assisted CO2 capture power plant with flexible operation: a case study in China[J]. Applied Thermal Engineering, 2021, 182, 116096. |
17 | Chen Q, Kang C, Xia Q, et al. Optimal flexible operation of a CO2 capture power plant in a combined energy and carbon emission market[J]. IEEE Transactions on Power Systems, 2012, 27(3): 1602-1609. |
18 | Lawal A, Wang M, Stephenson P. Investigating the dynamic response of CO2 chemical absorption process in enhanced-O2 coal power plant with post-combustion CO2 capture[J]. Energy Procedia, 2011, 4: 1035-1042. |
19 | He Z, Ricardez-Sandoval L A. Dynamic modelling of a commercial-scale CO2 capture plant integrated with a natural gas combined cycle (NGCC) power plant[J]. International Journal of Greenhouse Gas Control, 2016, 55: 23-35. |
20 | Haines M R, Davison J E. Designing carbon capture power plants to assist in meeting peak power demand[J]. Energy Procedia, 2009, 1: 1457-1464. |
21 | Cohen S M, Rochelle G T, Webber M E. Optimal operation of flexible post-combustion CO2 capture in response to volatile electricity prices[J]. Energy Procedia, 2011, 4: 2604-2611. |
22 | van Peteghem T, Delarue E. Opportunities for applying solvent storage to power plants with post-combustion carbon capture[J]. International Journal of Greenhouse Gas Control, 2014, 21: 203-213. |
23 | Mac Dowell N, Shah N. The multi-period optimisation of an amine-based CO2 capture process integrated with a super-critical coal-fired power station for flexible operation[J]. Computers & Chemical Engineering, 2015, 74: 169-183. |
24 | Mechleri E, Fennell P S, Mac Dowell N. Optimisation and evaluation of flexible operation strategies for coal- and gas-CCS power stations with a multi-period design approach[J]. International Journal of Greenhouse Gas Control, 2017, 59: 24-39. |
25 | Kirschen D S, Strbac G. Fundamentals of Power System Economics[M]. New York: John Wiley & Sons, Ltd, 2004. |
26 | Garces L P, Conejo A J. Weekly self-scheduling, forward contracting, and offering strategy for a producer[J]. IEEE Transactions on Power Systems, 2010, 25(2): 657-666. |
27 | Vlachou A, The European Union's emissions trading system[J]. Cambridge Journal of Economics, 2014, 38(1): 127-152. |
28 | Leung D Y C, Caramanna G, Maroto-Valer M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable & Sustainable Energy Reviews, 2014, 39(39): 426-443. |
29 | Aguilar O, Perry S, Kim J K, et al. Design and optimization of flexible utility systems subject to variable conditions(Part 1): Modelling framework[J]. Chemical Engineering Research and Design, 2007, 85(9): 1136-1148. |
30 | Reddy V S, Kaushik S C, Tyagi S K. Exergetic analysis and evaluation of coal-fired supercritical thermal power plant and natural gas-fired combined cycle power plant[J]. Clean Technologies and Environmental Policy, 2014, 16(3): 489-499. |
31 | 王营营. 基于碳捕集的燃煤发电机组热力系统性能研究[D]. 北京: 华北电力大学, 2015. |
Wang Y Y. Thermodynamic performance analysis of the coal-fired power plant with CO2 capture[D].Beijing: North China Electric Power University, 2015. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[3] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[4] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[5] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[6] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[7] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[8] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[9] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[10] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[11] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[12] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
[13] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[14] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[15] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||