CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 666-673.DOI: 10.11949/0438-1157.20221326
• Thermodynamics • Previous Articles Next Articles
Jingbo GAO1(), Qiang SUN1(), Qing LI2, Yiwei WANG3, Xuqiang GUO3
Received:
2022-10-08
Revised:
2023-01-04
Online:
2023-03-21
Published:
2023-02-05
Contact:
Qiang SUN
高靖博1(), 孙强1(), 李青2, 王逸伟3, 郭绪强3
通讯作者:
孙强
作者简介:
高靖博(1996—),男,博士研究生,gaobuoy@163.com基金资助:
CLC Number:
Jingbo GAO, Qiang SUN, Qing LI, Yiwei WANG, Xuqiang GUO. Hydrate equilibrium model of hydrogen-containing gas considering hydrates structure transformation[J]. CIESC Journal, 2023, 74(2): 666-673.
高靖博, 孙强, 李青, 王逸伟, 郭绪强. 考虑水合物结构转变的含氢气体水合物相平衡模型[J]. 化工学报, 2023, 74(2): 666-673.
Add to citation manager EndNote|Ris|BibTeX
组成 | 温度/K | 组数 | 绝对平均相对误差/% | 文献 |
---|---|---|---|---|
甲烷(CH4) | 273~287 | 9 | 1.50 | [ |
乙烷(C2H6) | 274.8~283.1 | 15 | 0.78 | [ |
丙烷(C3H8) | 276~280.2 | 10 | 2.70 | [ |
CH4 + C2H6 | 273~287 | 32 | 4.81 | [ |
CH4 + C3H8 | 274.8~283.1 | 29 | 3.40 | [ |
C2H6 + C3H8 | 276~280.2 | 36 | 6.38 | [ |
H2 + CH4 | 274.3~278.3 | 10 | 4.57 | [ |
H2 + C3H8 | 274.2~278.3 | 14 | 7.78 | [ |
Table 1 The prediction results of Chen-Guo model for hydrate equilibrium
组成 | 温度/K | 组数 | 绝对平均相对误差/% | 文献 |
---|---|---|---|---|
甲烷(CH4) | 273~287 | 9 | 1.50 | [ |
乙烷(C2H6) | 274.8~283.1 | 15 | 0.78 | [ |
丙烷(C3H8) | 276~280.2 | 10 | 2.70 | [ |
CH4 + C2H6 | 273~287 | 32 | 4.81 | [ |
CH4 + C3H8 | 274.8~283.1 | 29 | 3.40 | [ |
C2H6 + C3H8 | 276~280.2 | 36 | 6.38 | [ |
H2 + CH4 | 274.3~278.3 | 10 | 4.57 | [ |
H2 + C3H8 | 274.2~278.3 | 14 | 7.78 | [ |
甲烷摩尔分数/% | 温度/K | 组数 | 平均相对误差/% | |
---|---|---|---|---|
1.6 | 283.9~286.6 | 3 | 1.13 | 1 |
4.7 | 279.4~287.6 | 4 | 1.26 | 1 |
17.7 | 281.6~287.0 | 5 | 0.14 | 1 |
56.4 | 274.8~283.2 | 4 | 1.20 | 0 |
Table 2 The prediction results of hydrate phase equilibrium (Lw + H +V) for (CH4 + C2H6 + H2O) system(Ⅰ)[10]
甲烷摩尔分数/% | 温度/K | 组数 | 平均相对误差/% | |
---|---|---|---|---|
1.6 | 283.9~286.6 | 3 | 1.13 | 1 |
4.7 | 279.4~287.6 | 4 | 1.26 | 1 |
17.7 | 281.6~287.0 | 5 | 0.14 | 1 |
56.4 | 274.8~283.2 | 4 | 1.20 | 0 |
甲烷摩尔分数/% | 温度/K | 压力/MPa | 预测值/kPa | 相对 误差/% | |
---|---|---|---|---|---|
90.4 | 274.8 | 1.52 | 1.52 | 0.39 | 0.85 |
277.6 | 2.10 | 2.09 | 0.48 | 0.95 | |
280.4 | 2.89 | 2.81 | 2.87 | 1 | |
283.2 | 3.97 | 3.70 | 6.66 | 1 | |
95.0 | 274.8 | 1.84 | 1.85 | 0.22 | 0.80 |
277.6 | 2.53 | 2.51 | 0.95 | 0.85 | |
280.4 | 3.45 | 3.46 | 0.32 | 0.95 | |
283.2 | 4.77 | 4.69 | 1.76 | 1 | |
97.1 | 274.8 | 2.16 | 2.16 | 0.23 | 0.85 |
277.6 | 2.96 | 2.94 | 0.71 | 0.90 | |
280.4 | 4.03 | 4.07 | 0.97 | 1 | |
平均相对误差 | 1.20 |
Table 3 The prediction results of hydrate phase equilibrium (Lw + H +V) for (CH4 + C2H6 + H2O) system(Ⅱ)[10]
甲烷摩尔分数/% | 温度/K | 压力/MPa | 预测值/kPa | 相对 误差/% | |
---|---|---|---|---|---|
90.4 | 274.8 | 1.52 | 1.52 | 0.39 | 0.85 |
277.6 | 2.10 | 2.09 | 0.48 | 0.95 | |
280.4 | 2.89 | 2.81 | 2.87 | 1 | |
283.2 | 3.97 | 3.70 | 6.66 | 1 | |
95.0 | 274.8 | 1.84 | 1.85 | 0.22 | 0.80 |
277.6 | 2.53 | 2.51 | 0.95 | 0.85 | |
280.4 | 3.45 | 3.46 | 0.32 | 0.95 | |
283.2 | 4.77 | 4.69 | 1.76 | 1 | |
97.1 | 274.8 | 2.16 | 2.16 | 0.23 | 0.85 |
277.6 | 2.96 | 2.94 | 0.71 | 0.90 | |
280.4 | 4.03 | 4.07 | 0.97 | 1 | |
平均相对误差 | 1.20 |
乙烷摩尔分数/% | 温度/K | 组数 | 平均相对误差/% | |
---|---|---|---|---|
28.0 | 276~278 | 3 | 2.24 | 0 |
44.3 | 275.9~277.4 | 5 | 2.06 | 0 |
45.9 | 275.8~278 | 5 | 1.96 | 0 |
65.8 | 273.9~277.6 | 5 | 0.76 | 0 |
74.0 | 274.5~277.1 | 5 | 3.03 | 0 |
Table 4 The prediction results of hydrate phase equilibrium (Lw + H +V) for (C2H6 + C3H8 + H2O) system(Ⅰ)[15]
乙烷摩尔分数/% | 温度/K | 组数 | 平均相对误差/% | |
---|---|---|---|---|
28.0 | 276~278 | 3 | 2.24 | 0 |
44.3 | 275.9~277.4 | 5 | 2.06 | 0 |
45.9 | 275.8~278 | 5 | 1.96 | 0 |
65.8 | 273.9~277.6 | 5 | 0.76 | 0 |
74.0 | 274.5~277.1 | 5 | 3.03 | 0 |
乙烷摩尔分数/% | 温度/K | 压力/MPa | 预测值/kPa | 相对 误差/% | |
---|---|---|---|---|---|
81.4 | 273.1 | 0.54 | 0.53 | 1.54 | 0 |
273.8 | 0.64 | 0.62 | 2.78 | 0 | |
274.3 | 0.66 | 0.65 | 1.36 | 0.09 | |
274.7 | 0.71 | 0.71 | 0 | 0.09 | |
276.8 | 0.94 | 0.93 | 1.49 | 0.28 | |
278.9 | 1.21 | 1.20 | 0.77 | 0.43 | |
279.6 | 1.30 | 1.29 | 0.62 | 0.48 | |
85.0 | 275.7 | 0.74 | 0.77 | 3.69 | 0.4 |
277.2 | 0.90 | 0.93 | 3.00 | 0.49 | |
280.6 | 1.37 | 1.39 | 1.33 | 0.62 | |
85.7 | 279.7 | 1.19 | 1.19 | 0.08 | 0.63 |
280.2 | 1.30 | 1.29 | 0.35 | 0.63 | |
平均相对误差 | 1.82 |
Table 5 The prediction results of hydrate phase equilibrium (Lw + H +V) for (C2H6 + C3H8 + H2O) system(Ⅱ)[15]
乙烷摩尔分数/% | 温度/K | 压力/MPa | 预测值/kPa | 相对 误差/% | |
---|---|---|---|---|---|
81.4 | 273.1 | 0.54 | 0.53 | 1.54 | 0 |
273.8 | 0.64 | 0.62 | 2.78 | 0 | |
274.3 | 0.66 | 0.65 | 1.36 | 0.09 | |
274.7 | 0.71 | 0.71 | 0 | 0.09 | |
276.8 | 0.94 | 0.93 | 1.49 | 0.28 | |
278.9 | 1.21 | 1.20 | 0.77 | 0.43 | |
279.6 | 1.30 | 1.29 | 0.62 | 0.48 | |
85.0 | 275.7 | 0.74 | 0.77 | 3.69 | 0.4 |
277.2 | 0.90 | 0.93 | 3.00 | 0.49 | |
280.6 | 1.37 | 1.39 | 1.33 | 0.62 | |
85.7 | 279.7 | 1.19 | 1.19 | 0.08 | 0.63 |
280.2 | 1.30 | 1.29 | 0.35 | 0.63 | |
平均相对误差 | 1.82 |
项目 | 直径/0.1 nm | 直径比 |
---|---|---|
氢气 | 2.3 | |
sⅠ水合物小孔 | 3.95 | 0.58 |
sⅡ水合物小孔 | 3.91 | 0.59 |
Table 6 Diameter ratio of hydrogen to sⅠ and sⅡ hydrates
项目 | 直径/0.1 nm | 直径比 |
---|---|---|
氢气 | 2.3 | |
sⅠ水合物小孔 | 3.95 | 0.58 |
sⅡ水合物小孔 | 3.91 | 0.59 |
X/Pa | Y/K | Z/K | |
---|---|---|---|
H2 | 5.64×10-11 | 120.78 | 253.10 |
Table 7 Antonie expression parameter of H2[25]
X/Pa | Y/K | Z/K | |
---|---|---|---|
H2 | 5.64×10-11 | 120.78 | 253.10 |
分子种类 | I型水合物 | Ⅱ型水合物 | ||||
---|---|---|---|---|---|---|
A×10-9/MPa | B/K | C/K | A×10-22/MPa | B/K | C/K | |
H2 | 0.1 | 0 | 0 | 1 | 0 | 0 |
CH4 | 1584.4 | -6591.43 | 27.04 | 5.2602 | -13088 | 4.08 |
C2H6 | 47.500 | -5465.60 | 57.93 | 0.0399 | -11491 | 30.4 |
C3H8 | — | — | — | 4.1023 | -13106 | 30.2 |
Table 8 Antoine constants of f0(T)[27-28]
分子种类 | I型水合物 | Ⅱ型水合物 | ||||
---|---|---|---|---|---|---|
A×10-9/MPa | B/K | C/K | A×10-22/MPa | B/K | C/K | |
H2 | 0.1 | 0 | 0 | 1 | 0 | 0 |
CH4 | 1584.4 | -6591.43 | 27.04 | 5.2602 | -13088 | 4.08 |
C2H6 | 47.500 | -5465.60 | 57.93 | 0.0399 | -11491 | 30.4 |
C3H8 | — | — | — | 4.1023 | -13106 | 30.2 |
氢气摩尔 分数/% | 温度/ K | 相平衡压力/ MPa | Chen-Guo模型 预测压力/MPa | 相对误差/ % | 改进方法 预测压力/MPa | 相对误差/ % |
---|---|---|---|---|---|---|
平均相对误差/% | 4.57 | 2.57 | ||||
36.18 | 274.3 | 4.46 | 4.57 | 2.38 | 4.45 | 0.12 |
275.3 | 4.85 | 5.09 | 4.87 | 4.95 | 1.96 | |
276.3 | 5.32 | 5.67 | 6.48 | 5.49 | 3.17 | |
277.3 | 5.88 | 6.31 | 7.36 | 6.10 | 3.66 | |
278.3 | 6.63 | 7.02 | 5.82 | 6.77 | 2.12 | |
22.13 | 274.3 | 3.72 | 3.70 | 0.59 | 3.65 | 1.86 |
275.4 | 4.03 | 4.16 | 3.15 | 4.05 | 0.57 | |
276.2 | 4.36 | 4.53 | 3.83 | 4.50 | 3.18 | |
277.2 | 4.75 | 5.04 | 6.08 | 5.00 | 5.17 | |
278.2 | 5.34 | 5.61 | 5.09 | 5.55 | 3.91 |
Table 9 The prediction results of hydrate phase equilibrium (Lw + H +V) for (H2 + CH4 + H2O) system[16]
氢气摩尔 分数/% | 温度/ K | 相平衡压力/ MPa | Chen-Guo模型 预测压力/MPa | 相对误差/ % | 改进方法 预测压力/MPa | 相对误差/ % |
---|---|---|---|---|---|---|
平均相对误差/% | 4.57 | 2.57 | ||||
36.18 | 274.3 | 4.46 | 4.57 | 2.38 | 4.45 | 0.12 |
275.3 | 4.85 | 5.09 | 4.87 | 4.95 | 1.96 | |
276.3 | 5.32 | 5.67 | 6.48 | 5.49 | 3.17 | |
277.3 | 5.88 | 6.31 | 7.36 | 6.10 | 3.66 | |
278.3 | 6.63 | 7.02 | 5.82 | 6.77 | 2.12 | |
22.13 | 274.3 | 3.72 | 3.70 | 0.59 | 3.65 | 1.86 |
275.4 | 4.03 | 4.16 | 3.15 | 4.05 | 0.57 | |
276.2 | 4.36 | 4.53 | 3.83 | 4.50 | 3.18 | |
277.2 | 4.75 | 5.04 | 6.08 | 5.00 | 5.17 | |
278.2 | 5.34 | 5.61 | 5.09 | 5.55 | 3.91 |
氢气摩尔 分数/% | 温度/ K | 相平衡压力/ MPa | Chen-Guo模型 预测压力/MPa | 相对误差/ % | 改进方法 预测压力/MPa | 相对误差/ % |
---|---|---|---|---|---|---|
平均相对误差/% | 11.45 | 2.22 | ||||
87.22 | 276.2 | 2.58 | 2.74 | 6.09 | 2.50 | 3.25 |
277.3 | 3.20 | 3.66 | 14.22 | 3.23 | 0.99 | |
278.3 | 4 | 4.83 | 20.70 | 4.12 | 2.90 | |
81.64 | 275.2 | 1.44 | 1.46 | 1.67 | 1.37 | 4.68 |
276.3 | 1.74 | 1.93 | 10.80 | 1.78 | 2.05 | |
277.3 | 2.22 | 2.50 | 12.57 | 2.25 | 1.33 | |
278.1 | 2.72 | 3.10 | 14.08 | 2.73 | 0.32 |
Table 10 The prediction results of hydrate phase equilibrium (Lw + H +V) for (H2 + C3H8 + H2O) system[16]
氢气摩尔 分数/% | 温度/ K | 相平衡压力/ MPa | Chen-Guo模型 预测压力/MPa | 相对误差/ % | 改进方法 预测压力/MPa | 相对误差/ % |
---|---|---|---|---|---|---|
平均相对误差/% | 11.45 | 2.22 | ||||
87.22 | 276.2 | 2.58 | 2.74 | 6.09 | 2.50 | 3.25 |
277.3 | 3.20 | 3.66 | 14.22 | 3.23 | 0.99 | |
278.3 | 4 | 4.83 | 20.70 | 4.12 | 2.90 | |
81.64 | 275.2 | 1.44 | 1.46 | 1.67 | 1.37 | 4.68 |
276.3 | 1.74 | 1.93 | 10.80 | 1.78 | 2.05 | |
277.3 | 2.22 | 2.50 | 12.57 | 2.25 | 1.33 | |
278.1 | 2.72 | 3.10 | 14.08 | 2.73 | 0.32 |
甲烷摩尔 分数/% | 乙烷摩尔 分数/% | 丙烷摩尔 分数/% | 温度/ K | 相平衡压力/ MPa | Chen-Guo模型 预测压力/MPa | 相对误差/ % | 改进方法 预测压力/MPa | 相对误差/ % |
---|---|---|---|---|---|---|---|---|
平均相对误差/% | 7.92 | 2.25 | ||||||
6.25 | 3.55 | 6.00 | 279.55 | 4.73 | 5.05 | 6.77 | 4.80 | 1.56 |
280.25 | 5.32 | 5.65 | 6.20 | 5.35 | 0.65 | |||
281.35 | 6.33 | 6.72 | 6.14 | 6.33 | 0.01 | |||
281.95 | 7.11 | 7.37 | 3.66 | 6.92 | 2.62 | |||
282.75 | 8.05 | 8.34 | 3.60 | 7.78 | 3.29 | |||
283.35 | 8.54 | 9.134 | 6.96 | 8.53 | 0.17 | |||
283.95 | 9.72 | 10.01 | 2.98 | 9.31 | 4.22 | |||
6.18 | 3.35 | 8.00 | 279.05 | 3.56 | 3.98 | 11.71 | 3.78 | 6.08 |
279.75 | 4.13 | 4.48 | 8.36 | 4.23 | 2.49 | |||
280.35 | 4.45 | 4.95 | 11.24 | 4.65 | 4.60 | |||
281.35 | 5.32 | 5.83 | 9.68 | 5.45 | 2.51 | |||
281.95 | 5.82 | 6.44 | 10.65 | 5.99 | 2.92 | |||
282.35 | 6.23 | 6.87 | 10.24 | 6.37 | 2.28 | |||
282.95 | 6.95 | 7.56 | 8.78 | 6.99 | 0.55 | |||
283.35 | 7.35 | 8.06 | 9.66 | 7.43 | 1.05 | |||
283.75 | 7.82 | 8.60 | 9.97 | 7.90 | 0.96 |
Table 11 The prediction results of hydrate phase equilibrium (Lw + H +V) for (H2 + CH4 + C2H6 + C3H8 + H2O) system
甲烷摩尔 分数/% | 乙烷摩尔 分数/% | 丙烷摩尔 分数/% | 温度/ K | 相平衡压力/ MPa | Chen-Guo模型 预测压力/MPa | 相对误差/ % | 改进方法 预测压力/MPa | 相对误差/ % |
---|---|---|---|---|---|---|---|---|
平均相对误差/% | 7.92 | 2.25 | ||||||
6.25 | 3.55 | 6.00 | 279.55 | 4.73 | 5.05 | 6.77 | 4.80 | 1.56 |
280.25 | 5.32 | 5.65 | 6.20 | 5.35 | 0.65 | |||
281.35 | 6.33 | 6.72 | 6.14 | 6.33 | 0.01 | |||
281.95 | 7.11 | 7.37 | 3.66 | 6.92 | 2.62 | |||
282.75 | 8.05 | 8.34 | 3.60 | 7.78 | 3.29 | |||
283.35 | 8.54 | 9.134 | 6.96 | 8.53 | 0.17 | |||
283.95 | 9.72 | 10.01 | 2.98 | 9.31 | 4.22 | |||
6.18 | 3.35 | 8.00 | 279.05 | 3.56 | 3.98 | 11.71 | 3.78 | 6.08 |
279.75 | 4.13 | 4.48 | 8.36 | 4.23 | 2.49 | |||
280.35 | 4.45 | 4.95 | 11.24 | 4.65 | 4.60 | |||
281.35 | 5.32 | 5.83 | 9.68 | 5.45 | 2.51 | |||
281.95 | 5.82 | 6.44 | 10.65 | 5.99 | 2.92 | |||
282.35 | 6.23 | 6.87 | 10.24 | 6.37 | 2.28 | |||
282.95 | 6.95 | 7.56 | 8.78 | 6.99 | 0.55 | |||
283.35 | 7.35 | 8.06 | 9.66 | 7.43 | 1.05 | |||
283.75 | 7.82 | 8.60 | 9.97 | 7.90 | 0.96 |
1 | 周颖, 周红军, 徐春明. 氢能的思考及发展路径判断和实践[J]. 化工进展, 2022, 41(8): 4587-4592. |
Zhou Y, Zhou H J, Xu C M. Exploration of the development path for the hydrogen energy[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4587-4592. | |
2 | 龙庆兴, 许思维. 重油加氢技术特点和发展趋势研究[J]. 中国石油和化工标准与质量, 2020, 40(14): 247-248. |
Long Q X, Xu S W. Study on characteristics and development trend of heavy oil hydrogenation technology[J]. China Petroleum and Chemical Standard and Quality, 2020, 40(14): 247-248. | |
3 | 陈波, 刘爱贤, 孙强, 等. 柴油加氢尾气中氢气的水合物法回收工业侧线试验[J]. 化工进展, 2022, 41(6): 2924-2930. |
Chen B, Liu A X, Sun Q, et al. Industrial side-stream trial of hydrogen recovery from diesel hydrogenation tail gas via hydrate method[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2924-2930. | |
4 | Shang H, Bai H H, Li X M, et al. Site trials of methane capture from low-concentration coalbed methane drainage wells using a mobile skid-mounted vacuum pressure swing adsorption system[J]. Separation and purification Technology, 2022, 295: 121271. |
5 | 李贵贤, 王可, 王健, 等. 膜分离捕集燃煤电厂烟气CO2过程优化设计[J]. 化工学报, 2022, 73(11): 5065-5077. |
Li G X, Wang K, Wang J, et al. Optimal design of membrane separation process for capturing CO2 from flue gas of coal-fired power plant[J]. CIESC Journal, 2022, 73(11): 5065-5077. | |
6 | 于飞. 膜分离及深冷分离技术在聚丙烯装置的应用[J]. 现代化工, 2020, 40(3): 217-220. |
Yu F. Application of membrane-cryogenic hybrid separation technology in polypropylene plant[J]. Modern Chemical Industry, 2020, 40(3): 217-220. | |
7 | 薛倩, 王晓霖, 李遵照, 等. 水合物利用技术应用进展[J]. 化工进展, 2021, 40(2): 722-735. |
Xue Q, Wang X L, Li Z Z, et al. Research progresses in hydrate based technologies and processes[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 722-735. | |
8 | Jeong K, Metaxas P J, Helberg A, et al. Gas hydrate nucleation in acoustically levitated water droplets[J]. Chemical Engineering Journal, 2022, 433: 133494. |
9 | Chen X, Li H Z. New pragmatic strategies for optimizing Kihara potential parameters used in van der Waals-Platteeuw hydrate model[J]. Chemical Engineering Science, 2022, 248: 117213. |
10 | Parrish W R, Prausnitz J M. Dissociation pressures of gas hydrates formed by gas mixtures[J]. Industrial & Engineering Chemistry Process Design and Development, 1972, 11(1): 26-35. |
11 | Ng H J, Robinson D B. The prediction of hydrate formation in condensed systems[J]. AIChE Journal, 1977, 23(4): 477-482. |
12 | John V T, Papadopoulos K D, Holder G D. A generalized model for predicting equilibrium conditions for gas hydrates[J]. AIChE Journal, 1985, 31(2): 252-259. |
13 | Chen G J, Guo T M. A new approach to gas hydrate modelling[J]. Chemical Engineering Journal, 1998, 71(2): 145-151. |
14 | Wang L B, Cui J L, Sun C Y, et al. Review on the applications and modifications of the Chen-Guo model for hydrate formation and dissociation[J]. Energy & Fuels, 2021, 35(9): 2936-2964. |
15 | Holder G D, Hand J H. Multiple-phase equilibria in hydrates from methane, ethane, propane and water mixtures[J]. AIChE Journal, 1982, 28(3): 440-447. |
16 | Ng H J, Robinson D B. The measurement and prediction of hydrate formation in liquid hydrocarbon-water systems[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(4): 293-298. |
17 | Sloan E D, Subramanian S, Matthews P N, et al. Quantifying hydrate formation and kinetic inhibition[J]. Industrial & Engineering Chemistry Research, 1998, 37: 3124-3132. |
18 | Gao J B, Sun Q, Xu Z, et al. Modelling the hydrate formation condition in consideration of hydrates structure transformation[J]. Chemical Engineering Science, 2022, 251: 117487. |
19 | Zheng R Y, Li X L, Negahban S. Molecular-level insights into the structure stability of CH4-C2H6 hydrates[J]. Chemical Engineering Science, 2022, 247: 117039. |
20 | Subramanian S Jr, Kini R A, Des S F, et al. Evidence of structure Ⅱ hydrate formation from methane + ethane mixtures[J]. Chemical Engineering Science, 2000, 55(11): 1981-1999. |
21 | Hendriks E M, Edmonds B, Moorwood R A S, et al. Hydrate structure stability in simple and mixed hydrates[J]. Fluid Phase Equilibria, 1996, 117(1/2): 193-200. |
22 | 张世喜, 陈光进, 杨兰英, 等.含氢气体水合物生成条件的测定和计算[J].化工学报, 2003, 54(1): 24-28. |
Zhang S X, Chen G J, Yang L Y, et al. Measurement and calculation of hydrate formation conditions for gas mixtures containing hydrogen[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(1): 24-28. | |
23 | Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial and Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
24 | Patel N C, Teja A S. A new cubic equation of state for fluids and fluid mixtures[J]. Chemical Engineering Science, 1982, 37(3): 463-473. |
25 | 袁高强. 水合物-膜法耦合回收加氢尾气中氢气的基础研究[D]. 北京: 中国石油大学(北京), 2020. |
Yuan G Q. Basic study on the recovery of hydrogen from hydrogenation gas by hydrate-membrane coupling method[D]. Beijing: China University of Petroleum, 2020. | |
26 | Sugahara T, Murayama S, Hashimoto S. Phase equilibria for H2 + CO2 + H2O system containing gas hydrates[J]. Fluid Phase Equilibria, 2005, 233(2): 190-193. |
27 | 刘伟. 茂名石化油加氢尾气水合物提浓技术研究[D]. 北京: 中国石油大学(北京), 2017. |
Li W. Experimental study on the separation of Maoming petrochemical diesel hydrogenation tail via hydrate separation technique[D]. Beijing: China University of Petroleum, 2017. | |
28 | Chen G J, Guo T M. A new approach to gas hydrate modelling[J]. Chemical Engineering Journal, 1998, 71(2): 145-151. |
29 | 陈光进, 马庆兰, 郭天民. 气体水合物生成机理和热力学模型的建立[J]. 化工学报, 2000, 51(5): 626-631. |
Chen G J, Ma Q L, Guo T M. A new mechanism for hydrate formation and development of thermodynamic model[J]. Journal of Chemical Industry and Engineering (China), 2000, 51(5): 626-631. | |
30 | 陈波. 水合物法回收柴油加氢尾气工业侧线试验研究[D]. 北京: 中国石油大学(北京), 2021. |
Chen B. Industrial side-stream trial study for recovery of hydrogen from diesel hydrogenation tail gas via hydrate method[D]. Beijing: China University of Petroleum, 2021. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||