CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2335-2350.DOI: 10.11949/0438-1157.20230418
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Zhihang ZHENG1,2(), Junnan MA1, Zihan YAN1(), Chunxi LU1
Received:
2023-04-26
Revised:
2023-06-16
Online:
2023-07-27
Published:
2023-06-05
Contact:
Zihan YAN
通讯作者:
闫子涵
作者简介:
郑志航(1998—),男,硕士研究生,2680197495@qq.com
基金资助:
CLC Number:
Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser[J]. CIESC Journal, 2023, 74(6): 2335-2350.
郑志航, 马郡男, 闫子涵, 卢春喜. 提升管射流影响区内压力脉动特性研究[J]. 化工学报, 2023, 74(6): 2335-2350.
Add to citation manager EndNote|Ris|BibTeX
平均粒径dp/μm | 粒径范围/ μm | 堆积密度ρb/(kg/m3) | 颗粒密度ρp/(kg/m3) |
---|---|---|---|
70 | 30~90 | 870 | 1440 |
Table 1 Particulate parameter of catalyst
平均粒径dp/μm | 粒径范围/ μm | 堆积密度ρb/(kg/m3) | 颗粒密度ρp/(kg/m3) |
---|---|---|---|
70 | 30~90 | 870 | 1440 |
细节能量 | 频率范围/Hz |
---|---|
第1尺度 | 50~100 |
第2尺度 | 25~50 |
第3尺度 | 12.5~25 |
第4尺度 | 6.25~12.5 |
第5尺度 | 3.125~6.25 |
第6尺度 | 1.563~3.125 |
第7尺度 | 0.781~1.563 |
第8尺度 | 0.391~0.781 |
Table 2 Correspondence between scale and frequency range of each detail signal
细节能量 | 频率范围/Hz |
---|---|
第1尺度 | 50~100 |
第2尺度 | 25~50 |
第3尺度 | 12.5~25 |
第4尺度 | 6.25~12.5 |
第5尺度 | 3.125~6.25 |
第6尺度 | 1.563~3.125 |
第7尺度 | 0.781~1.563 |
第8尺度 | 0.391~0.781 |
1 | 宋亮. 石油化工催化裂化工艺技术优化[J]. 中国石油和化工标准与质量, 2021, 41(11): 154-155. |
Song L. Technical optimization of catalytic cracking process in petrochemical industry[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(11): 154-155. | |
2 | 王慧. 催化裂化装置粗汽油作急冷油进提升管回炼改质效果及其影响分析[J]. 石油炼制与化工, 2021, 52(3): 50-55. |
Wang H. Effect analysis of FCC naphtha used as quench oil in riser[J]. Petroleum Processing and Petrochemicals, 2021, 52(3): 50-55. | |
3 | 宁智远. 丁烯氧化脱氢装置开发提升管反应器展望[J]. 化工管理, 2016(5): 5-6. |
Ning Z Y. Prospect of developing riser reactor in butene oxidative dehydrogenation unit[J]. Chemical Enterprise Management, 2016(5): 5-6. | |
4 | Liu X C, Lu C X, Shi M X. Post-riser regeneration technology in FCC unit[J]. Petroleum Science, 2007, 4(2): 91-96. |
5 | 文佳佳. 新型MTO反应器内颗粒流动特性实验研究[D]. 北京: 中国石油大学(北京), 2019. |
Wen J J. Study on particle flow characteristics in a novel MTO reactor[D]. Beijing: China University of Petroleum, 2019. | |
6 | Li Z, Lu C X. FCC riser quick separation system: a review[J]. Petroleum Science, 2016, 13(4): 776-781. |
7 | Lu C X, Zhang Y M, Shi M X. A historic review on R&D of China's FCC riser termination device technologies[J]. International Journal of Chemical Reactor Engineering, 2013, 11(1): 225-242. |
8 | Shah M T, Utikar R P, Pareek V K, et al. Computational fluid dynamic modelling of FCC riser: a review[J]. Chemical Engineering Research and Design, 2016, 111: 403-448. |
9 | Chen S, Fan Y P, Yan Z H, et al. CFD optimization of feedstock injection angle in a FCC riser[J]. Chemical Engineering Science, 2016, 153: 58-74. |
10 | Nayak S V, Joshi S L, Ranade V V. Modeling of vaporization and cracking of liquid oil injected in a gas-solid riser[J]. Chemical Engineering Science, 2005, 60(22): 6049-6066. |
11 | 汪申, 时铭显. 我国催化裂化提升管反应系统设备技术的进展[J]. 石油化工动态, 2000, 8(5): 46-50. |
Wang S, Shi M X. Progress of domestic FCC riser reactor technology[J]. Petrochemical Industry Trends, 2000, 8(5): 46-50. | |
12 | 范怡平, 卢春喜. 催化裂化提升管进料段内多相流动及其结构优化[J]. 化工学报, 2018, 69(1): 249-258. |
Fan Y P, Lu C X. Multiphase flow characteristics and structural optimization in feed injection zone of FCC riser[J]. CIESC Journal, 2018, 69(1): 249-258. | |
13 | 崔刚, 刘梦溪. 流化催化裂化提升管进料段混合研究进展[J]. 广州化工, 2014, 42(16): 20-21. |
Cui G, Liu M X. Advances in feedstock injection-mixing zone of a FCC riser[J]. Guangzhou Chemical Industry, 2014, 42(16): 20-21. | |
14 | 范怡平, 杨志义, 许栋五, 等. 催化裂化提升管进料段内油剂两相流动混合的优化及工业应用[J]. 过程工程学报, 2006, 6(S2): 390-393. |
Fan Y P, Yang Z Y, Xu D W, et al. Optimization on the gas-solid two-phase flow in the feedstock injection-mixing zone of FCC riser and industrial application[J]. The Chinese Journal of Process Engineering, 2006, 6(S2): 390-393. | |
15 | 王宏民, 袁中立, 李克见. UPC-a新型高效喷嘴的工业应用[J]. 天然气与石油, 2002, 20(2): 37-39. |
Wang H M, Yuan Z L, Li K J. Industrial application of UPC-a new high-efficiency nozzle[J]. Natural Gas and Oil, 2002, 20(2): 37-39. | |
16 | 刘丙超. 循环流化床冷模装置设计及流态化实验研究[D]. 东营: 中国石油大学(华东), 2019. |
Liu B C. Design of circulating fluidized bed cold mold device and experimental study of fluidization[D]. Dongying: China University of Petroleum, 2019. | |
17 | 韩超一, 陈晓成, 吴文龙, 等. 内构件对变径提升管内气固流动特性的影响[J]. 石油炼制与化工, 2016, 47(1): 5-10. |
Han C Y, Chen X C, Wu W L, et al. Effect of internals on characteristics of gas-solids flow in a variable diameter riser reactor[J]. Petroleum Processing and Petrochemicals, 2016, 47(1): 5-10. | |
18 | 卢春喜, 范怡平, 刘梦溪, 等. 催化裂化反应系统关键装备技术研究进展[J]. 石油学报(石油加工), 2018, 34(3): 441-454. |
Lu C X, Fan Y P, Liu M X, et al. Advances in key equipment technologies of reaction system in RFCC unit[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2018, 34(3): 441-454. | |
19 | Mauleon J L, Sigaud J B. Process for the catalytic cracking of hydrocarbons in a fluidized bed and their applications: US4883583[P]. 1989-11-28. |
20 | 闫子涵, 秦小刚, 陈昇, 等. 油剂逆流接触提升管进料段固含率及颗粒速度的径向分布[J]. 过程工程学报, 2014, 14(5): 721-729. |
Yan Z H, Qin X G, Chen S, et al. Radial distributions of solids hold-up and particle velocity in FCC riser feed injection zone with catalyst-feed oil countercurrent contact[J]. The Chinese Journal of Process Engineering, 2014, 14(5): 721-729. | |
21 | Yan Z H, Fan Y P, Wang Z, et al. Dispersion of feed spray in a new type of FCC feed injection scheme[J]. AIChE Journal, 2016, 62(1): 46-61. |
22 | 闫子涵. 催化裂化提升管进料段内流动特性的实验研究及结构优化[D]. 北京: 中国石油大学(北京), 2017. |
Yan Z H. Experimental study of gas-solid two-phase flow in FCC feed injection zone and the structure optimization[D]. Beijing: China University of Petroleum, 2017. | |
23 | Yan Z H, Fan Y P, Bi X T, et al. Flow patterns of feed spray in different fluid catalytic cracking feed injection schemes[J]. Industrial & Engineering Chemistry Research, 2017, 56(22): 6441-6450. |
24 | 陈永国, 田子平, 缪正清, 等. 时频分析在循环流化床流型识别中的应用[J]. 仪器仪表学报, 2003, 24(S2): 452-454, 471. |
Chen Y G, Tian Z P, Miao Z Q, et al. The experimental study of fluid transition in the circulating fluidized beds[J]. Chinese Journal of Scientific Instrument, 2003, 24(S2): 452-454, 471. | |
25 | Fan L T, Ho T C, Hiraoka S, et al. Pressure fluctuations in a fluidized bed[J]. AIChE Journal, 1981, 27(3): 388-396. |
26 | 陈鸿伟, 麻哲瑞, 杨新, 等. 基于Daubechies小波分析的双循环流化床气化室压力波动特性研究[J]. 华北电力大学学报(自然科学版), 2018, 45(5): 78-84. |
Chen H W, Ma Z R, Yang X, et al. Study on pressure fluctuation characteristics of gasification chamber on basis of Daubechies wavelet analysis in dual circulating fluidized bed[J]. Journal of North China Electric Power University(Natural Science Edition), 2018, 45(5): 78-84. | |
27 | 王嘉骏, 张文峰, 冯连芳, 等. 气固搅拌流化床压力脉动的小波分析[J]. 化工学报, 2006, 57(12): 2854-2859. |
Wang J J, Zhang W F, Feng L F, et al. Wavelets analysis of pressure fluctuation in agitated fluidized bed[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(12): 2854-2859. | |
28 | 张永俊, 王嘉骏, 顾雪萍, 等. 气固搅拌流化床中压力脉动特性[J]. 化工学报, 2016, 67(2): 494-503. |
Zhang Y J, Wang J J, Gu X P, et al. Pressure fluctuation in gas-solid agitated fluidized bed[J]. CIESC Journal, 2016, 67(2): 494-503. | |
29 | Tahmasebpour M, Zarghami R, Sotudeh-Gharebagh R, et al. Characterization of various structures in gas-solid fluidized beds by recurrence quantification analysis[J]. Particuology, 2013, 11(6): 647-656. |
30 | Zhou Y L, Yang N. Riser pipe pressure pulsation standard deviation fast forecast spouted bed granular poly group[J]. Applied Mechanics and Materials, 2013, 448/449/450/451/452/453: 3397-3402. |
31 | 刘宝勇, 魏绪玲, 张斌. 循环流化床提升管压力瞬时波动研究[J]. 化工技术与开发, 2015, 44(5): 58-61. |
Liu B Y, Wei X L, Zhang B. Research on pressure instantaneous fluctuations in riser of circulating fluidized bed[J]. Technology & Development of Chemical Industry, 2015, 44(5): 58-61. | |
32 | 邹媛媛, 冯璇, 沈来宏. 变径提升管压力脉动和颗粒循环量数值模拟[J]. 工业控制计算机, 2019, 32(6): 20-22. |
Zou Y Y, Feng X, Shen L H. CPFD simulation of pressure fluctuation and solid circulation rate of multi-regime riser[J]. Industrial Control Computer, 2019, 32(6): 20-22. | |
33 | 谢金朋, 吴广恒, 王德武, 等. 变径组合提升管内压力脉动及其流型转变特性[J]. 石油学报(石油加工), 2019, 35(1): 83-90. |
Xie J P, Wu G H, Wang D W, et al. Characteristics of pressure fluctuation in adjustable combined riser and flow regime transition[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2019, 35(1): 83-90. | |
34 | van der Schaaf J, Johnson F, Schouten J C, et al. Fourier analysis of nonlinear pressure fluctuations in gas-solids flow in CFB risers—observing solids structures and gas/particle turbulence[J]. Chemical Engineering Science, 1999, 54(22): 5541-5546. |
35 | 孙立强, 许利辉, 胡霞, 等. 循环流化床颗粒循环回路上动态压力的测量与分析[J]. 石油学报(石油加工), 2018, 34(4): 739-745. |
Sun L Q, Xu L H, Hu X, et al. Experimental analysis of dynamic pressure in the particle circulating loop of circulating fluidized bed reactor[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2018, 34(4): 739-745. | |
36 | 胡小康, 刘小成, 徐俊, 等. 循环流化床提升管内压力脉动特性[J]. 化工学报, 2010, 61(4): 825-831. |
Hu X K, Liu X C, Xu J, et al. Characteristics of pressure fluctuations in CFB riser[J]. CIESC Journal, 2010, 61(4): 825-831. | |
37 | 丁睿, 王德武, 刘燕, 等. 提升管加床层反应器不同操作模式下的压力脉动特性[J]. 过程工程学报, 2016, 16(5): 721-729. |
Ding R, Wang D W, Liu Y, et al. Pressure fluctuation characteristics of riser-fluidized bed reactor under different operating modes[J]. The Chinese Journal of Process Engineering, 2016, 16(5): 721-729. | |
38 | 赵凤静, 边京, 范怡平. 新型提升管进料段内压力脉动强度分布的影响因素[J]. 过程工程学报, 2018, 18(1): 69-74. |
Zhao F J, Bian J, Fan Y P. Influencing factors on distribution of pressure pulsation intensity in injection zone of a novel FCC riser[J]. The Chinese Journal of Process Engineering, 2018, 18(1): 69-74. | |
39 | 赵凤静. 催化裂化提升管进料段结构的优化和动态压力的实验研究[D]. 北京: 中国石油大学(北京), 2018. |
Zhao F J. Structure optimization of FCC feed injection zone and the experimental study on the pressure pulsations[D]. Beijing: China University of Petroleum, 2018. | |
40 | Yan Z H, Chen S, Wang Z, et al. Distributions of solids holdup and particle velocity in the FCC riser with downward pointed feed injection scheme[J]. Powder Technology, 2016, 304: 63-72. |
41 | 范怡平, 叶盛, 卢春喜, 等. 提升管反应器进料混合段内气固两相流动特性(Ⅰ): 实验研究[J]. 化工学报, 2002, 53(10): 1003-1008. |
Fan Y P, Ye S, Lu C X, et al. Gas-solid two-phase flow in feed injection zone of FCC riser reactors (Ⅰ): Experimental research[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(10): 1003-1008. | |
42 | Zhao G B, Yang Y R. Multiscale resolution of fluidized-bed pressure fluctuations[J]. AIChE Journal, 2003, 49(4): 869-882. |
43 | 闫子涵, 范怡平, 卢春喜, 等. 催化裂化提升管进料混合区内固含率的动态特征及聚团行为[J]. 石油科学通报, 2020, 5(1): 122-131. |
Yan Z H, Fan Y P, Lu C X, et al. Solids hold-up dynamic behavior and cluster characteristic in FCC jet mixing zone[J]. Petroleum Science Bulletin, 2020, 5(1): 122-131. | |
44 | 常宇航. 基于压力信号的循环流化床多尺度特性研究[D]. 北京: 中国石油大学(北京), 2020. |
Chang Y H. Research on multi-scale characteristics of circulating fluidized bed based on pressure signal[D]. Beijing: China University of Petroleum, 2020. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[3] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[4] | Qichao LIU, Yunlong ZHOU, Cong CHEN. Analysis and calculation of void fraction of gas-liquid two-phase flow in vertical riser under fluctuating vibration [J]. CIESC Journal, 2023, 74(6): 2391-2403. |
[5] | Jian ZHAO, Xingchao ZHOU, Dan XIA, Hang DONG. Study on influence of mechanical stirring on heat transfer characteristics during jet heating of crude oil storage tank [J]. CIESC Journal, 2023, 74(5): 1982-1999. |
[6] | Xinya LI, Lei XING, Minghu JIANG, Lixin ZHAO. Research on performance of downhole oil-water separation hydrocyclone enhanced by inverted cone gas injection [J]. CIESC Journal, 2023, 74(3): 1134-1144. |
[7] | Shaohang YAN, Tianwei LAI, Yanwu WANG, Yu HOU, Shuangtao CHEN. Visual experimental study on cavitation of R134a in micro clearance [J]. CIESC Journal, 2023, 74(3): 1054-1061. |
[8] | Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors [J]. CIESC Journal, 2023, 74(2): 511-524. |
[9] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
[10] | Shanshan LIAO, Shaogang ZHANG, Junjun TAO, Jiahao LIU, Jinhui WANG. Numerical simulation analysis of vertical jet fire impinging on the pipeline [J]. CIESC Journal, 2022, 73(9): 4226-4234. |
[11] | Xiaoping GUAN, Ning YANG. Multiphase drag and population balance models based on mesoscale stability condition [J]. CIESC Journal, 2022, 73(6): 2427-2437. |
[12] | Mengxi LIU, Yiping FAN, Zihan YAN, Xiuying YAO, Chunxi LU. Regulation and industrial application of gas jet hydrodynamic behavior in a feedstock injection zone of a riser [J]. CIESC Journal, 2022, 73(6): 2496-2513. |
[13] | Xiaogang SHI, Chengxiu WANG, Jinsen GAO, Xingying LAN. Numerical simulation study on influence of mesoscale structure in riser reactor [J]. CIESC Journal, 2022, 73(6): 2708-2721. |
[14] | Tienan LI, Bidan ZHAO, Peng ZHAO, Yongmin ZHANG, Junwu WANG. CFD-DEM simulation of the force acting on immersed baffles during the start-up stage of a gas-solid fluidized bed [J]. CIESC Journal, 2022, 73(6): 2649-2661. |
[15] | Xiaoqiang FAN, Zhengliang HUANG, Jingyuan SUN, Jingdai WANG, Xiaofei WANG, Xiaobo HU, Guodong HAN, Yongrong YANG, Wenqing WU. Development of cloudy gas-liquid fluidized bed ethylene polymerization process and high performance products [J]. CIESC Journal, 2022, 73(6): 2742-2747. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||