CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 4226-4234.DOI: 10.11949/0438-1157.20220698
• Process safety • Previous Articles Next Articles
Shanshan LIAO1(), Shaogang ZHANG1(), Junjun TAO2, Jiahao LIU1, Jinhui WANG1
Received:
2022-05-14
Revised:
2022-06-23
Online:
2022-10-09
Published:
2022-09-05
Contact:
Shaogang ZHANG
廖珊珊1(), 张少刚1(), 陶骏骏2, 刘家豪1, 汪金辉1
通讯作者:
张少刚
作者简介:
廖珊珊(1998—),女,硕士研究生,202030410067@ stu.shmtu.edu.cn
基金资助:
CLC Number:
Shanshan LIAO, Shaogang ZHANG, Junjun TAO, Jiahao LIU, Jinhui WANG. Numerical simulation analysis of vertical jet fire impinging on the pipeline[J]. CIESC Journal, 2022, 73(9): 4226-4234.
廖珊珊, 张少刚, 陶骏骏, 刘家豪, 汪金辉. 竖直射流火撞击障碍管道数值模拟分析[J]. 化工学报, 2022, 73(9): 4226-4234.
障碍管道数量 | 管道-火源距离H/m | 管道直径D1/m | 燃料泄漏速度u/(m/s) | 热释放速率 Q/kW |
---|---|---|---|---|
0 | — | — | 150~400 | 167.2~445.8 |
1 | 0.5 | 0.4 | 150~400 | 167.2~445.8 |
1 | 1.0 | 0.4 | 150~400 | 167.2~445.8 |
1 | 1.5 | 0.2 | 150~400 | 167.2~445.8 |
1 | 1.5 | 0.4 | 150~400 | 167.2~445.8 |
1 | 1.5 | 0.6 | 150~400 | 167.2~445.8 |
1 | 1.5 | 0.8 | 150~400 | 167.2~445.8 |
Table1 Information of simulation tests
障碍管道数量 | 管道-火源距离H/m | 管道直径D1/m | 燃料泄漏速度u/(m/s) | 热释放速率 Q/kW |
---|---|---|---|---|
0 | — | — | 150~400 | 167.2~445.8 |
1 | 0.5 | 0.4 | 150~400 | 167.2~445.8 |
1 | 1.0 | 0.4 | 150~400 | 167.2~445.8 |
1 | 1.5 | 0.2 | 150~400 | 167.2~445.8 |
1 | 1.5 | 0.4 | 150~400 | 167.2~445.8 |
1 | 1.5 | 0.6 | 150~400 | 167.2~445.8 |
1 | 1.5 | 0.8 | 150~400 | 167.2~445.8 |
文献 | 燃料类型 | 喷射方向 | Fr | 火焰长度公式 |
---|---|---|---|---|
[ | 丙烷 | 竖直 | 80~1×105 | |
[ | 丙烷和乙烯 | 竖直 | 800~8×104 | |
[ | 液化石油气 | 竖直 | 150~4.5×105 | |
[ | 天然气 | 竖直 | 2.7×103~8.2×104 |
Table 2 Some current studies on flame length of jet fire
文献 | 燃料类型 | 喷射方向 | Fr | 火焰长度公式 |
---|---|---|---|---|
[ | 丙烷 | 竖直 | 80~1×105 | |
[ | 丙烷和乙烯 | 竖直 | 800~8×104 | |
[ | 液化石油气 | 竖直 | 150~4.5×105 | |
[ | 天然气 | 竖直 | 2.7×103~8.2×104 |
1 | E.I.A.US.Annual energy outlook[R].Washington D.C.:U.S. Department of Energy, 2013. |
2 | Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied Energy, 2016, 162: 1633-1652. |
3 | 中国青年网. 广西防城港一化工厂管道泄漏引发火灾[Z/OL]. [2022-05-14].. |
China Youth Network. Fire caused by pipeline leakage at a chemical plant in Fangchenggang, Guangxi[Z/OL]. [2022-05-14].. | |
4 | 周魁斌, 刘娇艳, 蒋军成. 高压可燃气体泄漏动力学过程与喷射火热灾害分析[J]. 化工学报, 2018, 69(4): 1276-1287. |
Zhou K B, Liu J Y, Jiang J C. Analyses on dynamical process of high pressure combustible gas leakage and thermal hazard of jet fire[J]. CIESC Journal, 2018, 69(4): 1276-1287. | |
5 | Kim J S, Yang W, Kim Y, et al. Behavior of buoyancy and momentum controlled hydrogen jets and flames emitted into the quiescent atmosphere[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(6): 943-949. |
6 | Ab Aziz N S, Kasmani R M, Samsudin M D M, et al. Main geometrical features of horizontal buoyant jet fire and associated radiative fraction[J]. Process Safety Progress, 2019, 39: e12124. |
7 | Zukoski E E, Kubota T, Cetegen B. Entrainment in fire plumes[J]. Fire Safety Journal, 1981, 3(2): 107-121. |
8 | Heskestad G. Luminous heights of turbulent diffusion flames[J]. Fire Safety Journal, 1983, 5(2): 103-108. |
9 | Heskestad G. Turbulent jet diffusion flames: consolidation of flame height data[J]. Combustion and Flame, 1999, 118(1/2): 51-60. |
10 | Delichatsios M A. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships[J]. Combustion and Flame, 1993, 92(4): 349-364. |
11 | Schefer R W, Houf W G, Bourne B, et al. Spatial and radiative properties of an open-flame hydrogen plume[J]. International Journal of Hydrogen Energy, 2006, 31(10): 1332-1340. |
12 | 周魁斌, 蒋军成, 李国宝. 管道压力对天然气射流火热辐射灾害的影响[J]. 安全与环境学报, 2016, 16(5): 163-167. |
Zhou K B, Jiang J C, Li G B. Impact of the pipeline pressure on the thermal radiation hazards of the natural gas jet flame[J]. Journal of Safety and Environment, 2016, 16(5): 163-167. | |
13 | Mashhadimoslem H, Ghaemi A, Palacios A, et al. A new method for comparison thermal radiation on large-scale hydrogen and propane jet fires based on experimental and computational studies[J]. Fuel, 2020, 282: 118864. |
14 | Lv J, Zhang X L, Liu S X, et al. Flame morphology of horizontal jets under sub-atmospheric pressures: experiment, dimensional analysis and an integral model[J]. Fuel, 2022, 307: 121891. |
15 | Rengel B, Àgueda A, Pastor E, et al. Experimental and computational analysis of vertical jet fires of methane in normal and sub-atmospheric pressures[J]. Fuel, 2020, 265: 116878. |
16 | 尚峰举. 水平环境风作用下扩散射流火焰下洗及脱离行为研究[D]. 合肥: 中国科学技术大学, 2017. |
Shang F J. The downwash and detachment study of jet fire diffusion flame in cross-flow[D]. Hefei: University of Science and Technology of China, 2017. | |
17 | 王静舞. 横向风条件下射流扩散火焰形态与燃烧特性研究[D]. 合肥: 中国科学技术大学, 2017. |
Wang J W. Study of shapes and combustion characteristics of jet diffusion flames under crossflow[D]. Hefei: University of Science and Technology of China, 2017. | |
18 | 刘松涛,赵金龙,卫文彬,等. 隧道内不同间距双火源火灾实验及模拟研究[J].中国公路学报, 2022, 35(7): 193-202. |
Liu S T, Zhao J L, Wei W B,et al. Experiment and simulation study on double fire sources with different distances in tunnel[J]. Chinese Journal of Highways, 2022, 35(7): 193-202. | |
19 | 李博. 侧向风作用下的双火源相互作用燃烧特性研究[D]. 合肥: 中国科学技术大学, 2021. |
Li B. Interaction behaviors of two fire sources burning under cross wind[D]. Hefei: University of Science and Technology of China, 2021. | |
20 | Iyogun C O, Birouk M. Effect of fuel nozzle geometry on the stability of a turbulent jet methane flame[J]. Combustion Science and Technology, 2008, 180(12): 2186-2209. |
21 | Imamura T, Hamada S, Mogi T, et al. Experimental investigation on the thermal properties of hydrogen jet flame and hot currents in the downstream region[J]. International Journal of Hydrogen Energy, 2008, 33(13): 3426-3435. |
22 | Roberts T, Beckett H, Buckland I. Directed water deluge protection of liquefied petroleum gas vessels[C]// Institution of Chemical Engineers Symposium Series. Institution of Chemical Engineers, 2001: 193-212. |
23 | Wang Z H, Zhou K B, Zhang L, et al. Flame extension area and temperature profile of horizontal jet fire impinging on a vertical plate[J]. Process Safety and Environmental Protection, 2021, 147: 547-558. |
24 | Zhang X C, Hu L H, Zhu W, et al. Flame extension length and temperature profile in thermal impinging flow of buoyant round jet upon a horizontal plate[J]. Applied Thermal Engineering, 2014, 73(1): 15-22. |
25 | Zhang X C, Tao H W, Xu W B, et al. Flame extension lengths beneath an inclined ceiling induced by rectangular-source fires[J]. Combustion and Flame, 2017, 176: 349-357. |
26 | Zhang X C, Tao H W, Zhang Z J, et al. Temperature profile beneath an inclined ceiling induced by plume impingement of gas fuel jet flame[J]. Fuel, 2018, 223: 408-413. |
27 | Wang C, Ding L, Wan H X, et al. Experimental study of flame morphology and size model of a horizontal jet flame impinging a wall[J]. Process Safety and Environmental Protection, 2021, 147: 1009-1017. |
28 | 周梦雅, 周魁斌, 王朝, 等. 坑道限制条件下水平丙烷喷射火火焰行为研究[J]. 化工学报, 2022, 73(2): 960-971. |
Zhou M Y, Zhou K B, Wang C, et al. Flame behavior of horizontal propane jet fire in a pit[J]. CIESC Journal, 2022, 73(2): 960-971. | |
29 | Kashi E, Bahoosh M. Jet fire assessment in complex environments using computational fluid dynamics[J]. Brazilian Journal of Chemical Engineering, 2020, 37(1): 203-212. |
30 | 李玉星, 刘鹏, 耿晓茹, 等. 障碍物条件下的甲烷水平喷射火燃烧特性研究[J]. 油气田地面工程, 2019, 38(10): 7-13. |
Li Y X, Liu P, Geng X R, et al. Study on combustion characteristics of methane horizontal jet fire with obstacles[J]. Oil-Gasfield Surface Engineering, 2019, 38(10): 7-13. | |
31 | 吴月琼, 周魁斌, 黄梦源, 等. 储罐壁面限制条件下喷射火火焰行为[J]. 化工学报, 2021, 72(5): 2896-2904. |
Wu Y Q, Zhou K B, Huang M Y, et al. Flame behavior of jet fire confined by the tank wall[J]. CIESC Journal, 2021, 72(5): 2896-2904. | |
32 | Foroughi V, Palacios A, Barraza C, et al. Thermal effects of a sonic jet fire impingement on a pipe[J]. Journal of Loss Prevention in the Process Industries, 2021, 71: 104449. |
33 | Wang Z, Zhou K, Liu M, et al. Lift-off behavior of horizontal subsonic jet flames impinging on a cylindrical surface[C]// Proceedings of the Ninth International Seminar on Fire and Explosion Hazards. Saint-Petersburg: Saint-Petersberg Polytechnic University Press, 2019: 831-841. |
34 | Laboureur D M, Gopalaswami N, Zhang B, et al. Experimental study on propane jet fire hazards: assessment of the main geometrical features of horizontal jet flames[J]. Journal of Loss Prevention in the Process Industries, 2016, 41: 355-364. |
35 | Palacios A, García W, Rengel B. Flame shapes and thermal fluxes for an extensive range of horizontal jet flames[J]. Fuel, 2020, 279: 118328. |
36 | 孔祥晓. 不同喷射方向湍流射流火焰撞壁行为特征研究[D]. 合肥: 中国科学技术大学, 2021. |
Kong X X. Research on the behavior characteristics of turbulent jet flame impinging on the wall with different jet directions[D]. Hefei: University of Science and Technology of China, 2021. | |
37 | Huang Y B, Li Y F, Dong B Y, et al. Predicting the main geometrical features of horizontal rectangular source fuel jet fires[J]. Journal of the Energy Institute, 2018, 91(6): 1153-1163. |
38 | Palacios A, Rengel B. Computational analysis of vertical and horizontal jet fires[J]. Journal of Loss Prevention in the Process Industries, 2020, 65: 104096. |
39 | Armaly B F, Durst F, Pereira J C F, et al. Experimental and theoretical investigation of backward-facing step flow[J]. Journal of Fluid Mechanics, 1983, 127: 473. |
40 | Delichatsios M A. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships[J]. Combustion and Flame, 1993, 92(4): 349-364. |
41 | Sonju O K, Hustad J. An experimental study of turbulent jet diffusion flames[J]. Norwegian Maritime Research, 1984, 4(12): 2-11. |
42 | Santos A, Costa M. Reexamination of the scaling laws for NO x emissions from hydrocarbon turbulent jet diffusion flames[J]. Combustion and Flame, 2005, 142(1/2): 160-169. |
43 | Kiran D Y, Mishra D P. Experimental studies of flame stability and emission characteristics of simple LPG jet diffusion flame[J]. Fuel, 2007, 86(10/11): 1545-1551. |
44 | 耿晓茹. 障碍物对天然气管道喷射火影响的实验及数值模拟研究[D]. 东营: 中国石油大学(华东), 2018. |
Geng X R. Experiment and numerical simulation of influence of obstacles on jet fire in natural gas pipelines[D]. Dongying: China University of Petroleum, 2018. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[4] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[5] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[6] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[7] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[8] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[9] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[10] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[11] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[12] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
[13] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[14] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[15] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 83
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 193
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||