CIESC Journal ›› 2023, Vol. 74 ›› Issue (10): 4352-4366.DOI: 10.11949/0438-1157.20230915
• Process safety • Previous Articles
Bingyou JIANG1,3(), Dawei DING1,3, Mingqing SU2(), Kunlun LU1,3
Received:
2023-09-01
Revised:
2023-09-24
Online:
2023-12-22
Published:
2023-10-25
Contact:
Mingqing SU
江丙友1,3(), 丁大伟1,3, 苏明清2(), 鲁昆仑1,3
通讯作者:
苏明清
作者简介:
江丙友(1987—),男,博士,教授,cumtjiangby@163.com
基金资助:
CLC Number:
Bingyou JIANG, Dawei DING, Mingqing SU, Kunlun LU. Study on the effect of ammonium polyphosphate on the explosion characteristics and pyrolysis kinetics of polyethylene dusts[J]. CIESC Journal, 2023, 74(10): 4352-4366.
江丙友, 丁大伟, 苏明清, 鲁昆仑. 聚磷酸铵对聚乙烯粉尘爆炸特性及热解动力学影响研究[J]. 化工学报, 2023, 74(10): 4352-4366.
Add to citation manager EndNote|Ris|BibTeX
样品 | 化学式 | 密度/ (g/cm³) | 熔点/ ℃ | 分子量 | D50/μm |
---|---|---|---|---|---|
聚乙烯(PE) | (C2H4) n | 0.962 | 85 | — | 25.369 |
聚磷酸铵(APP) | (NH4) n+2P n O3n+1 | 1.74 | — | 115 | 10.605 |
Table 1 Physical and chemical properties of PE and APP
样品 | 化学式 | 密度/ (g/cm³) | 熔点/ ℃ | 分子量 | D50/μm |
---|---|---|---|---|---|
聚乙烯(PE) | (C2H4) n | 0.962 | 85 | — | 25.369 |
聚磷酸铵(APP) | (NH4) n+2P n O3n+1 | 1.74 | — | 115 | 10.605 |
火焰传播时间/ms | 灰度均值 | ||
---|---|---|---|
未添加APP | 0.1 g APP | 0.2 g APP | |
60 | 4.2217 | 4.8477 | 1.4867 |
70 | 5.5303 | 5.2869 | 1.8246 |
80 | 7.6907 | 6.1680 | 2.0551 |
90 | 10.6845 | 7.7607 | 2.1089 |
95 | 11.9554 | 6.9204 | 2.1988 |
100 | 14.2547 | 10.9432 | 2.5561 |
115 | 22.0191 | 15.3787 | 3.9400 |
130 | 23.9056 | 16.3275 | 5.7265 |
140 | 29.0628 | 17.5043 | 9.0453 |
200 | 19.0878 | 15.9452 | 16.1389 |
250 | 9.6807 | 7.4677 | 8.7830 |
280 | 5.2990 | 5.6537 | 7.1399 |
Table 2 Average of PE flame grey scale frequency distributions
火焰传播时间/ms | 灰度均值 | ||
---|---|---|---|
未添加APP | 0.1 g APP | 0.2 g APP | |
60 | 4.2217 | 4.8477 | 1.4867 |
70 | 5.5303 | 5.2869 | 1.8246 |
80 | 7.6907 | 6.1680 | 2.0551 |
90 | 10.6845 | 7.7607 | 2.1089 |
95 | 11.9554 | 6.9204 | 2.1988 |
100 | 14.2547 | 10.9432 | 2.5561 |
115 | 22.0191 | 15.3787 | 3.9400 |
130 | 23.9056 | 16.3275 | 5.7265 |
140 | 29.0628 | 17.5043 | 9.0453 |
200 | 19.0878 | 15.9452 | 16.1389 |
250 | 9.6807 | 7.4677 | 8.7830 |
280 | 5.2990 | 5.6537 | 7.1399 |
样品 | 升温速率/ (K/min) | 活化能/ (kJ/mol) | 指前因子/min-1 | 机理函数 |
---|---|---|---|---|
PE | 5 | 94.81 | 5.36×105 | A3模型 |
10 | 159.17 | 3.95×1010 | A3模型 | |
20 | 158.04 | 3.31×1010 | A3模型 | |
平均值 | 137.34 | 2.42×1010 | ||
APP-PE | 5 | 224.93 | 6.93×1014 | R2模型 |
10 | 228.05 | 1.09×1015 | R2模型 | |
20 | 232.59 | 2.60×1015 | R2模型 | |
平均值 | 228.52 | 1.46×1015 |
Table 3 Kinetic parameters of PE and APP-PE mixture (I=1.0) at different heating rates
样品 | 升温速率/ (K/min) | 活化能/ (kJ/mol) | 指前因子/min-1 | 机理函数 |
---|---|---|---|---|
PE | 5 | 94.81 | 5.36×105 | A3模型 |
10 | 159.17 | 3.95×1010 | A3模型 | |
20 | 158.04 | 3.31×1010 | A3模型 | |
平均值 | 137.34 | 2.42×1010 | ||
APP-PE | 5 | 224.93 | 6.93×1014 | R2模型 |
10 | 228.05 | 1.09×1015 | R2模型 | |
20 | 232.59 | 2.60×1015 | R2模型 | |
平均值 | 228.52 | 1.46×1015 |
1 | Cheng Y C, Chang S C, Shu C M. Effects of volatile organic compounds on the explosion characteristics of polyethylene dust[J]. Process Safety and Environmental Protection, 2022, 168: 114-122. |
2 | Gan B, Gao W, Jiang H, et al. Flame propagation behaviors and temperature characteristics in polyethylene dust explosions[J]. Powder Technology, 2018, 328: 345-357. |
3 | Han O S, Lee J S. Pyrolysis characteristic and ignition energy of high-density polyethylene powder[J]. Journal of the Korean Institute of Gas, 2014, 18(3): 31-37. |
4 | Yan X Q, Yu J L. Dust explosion incidents in China[J]. Process Safety Progress, 2012, 31(2): 187-189. |
5 | 张延松, 李南, 郭瑞, 等. 月桂酸与硬脂酸粉尘爆炸过程热解动力学与火焰传播特性关系[J]. 爆炸与冲击, 2022, 42(7): 159-170. |
Zhang Y S, Li N, Guo R, et al. Relationship between pyrolysis kinetics and flame propagation characteristics of lauric acid and stearic acid dust explosion[J]. Explosion and Shock, 2022, 42(7): 159-170. | |
6 | Yuan Z, Khakzad N, Khan F, et al. Dust explosions: a threat to the process industries[J]. Process Safety and Environmental Protection, 2015, 98: 57-71. |
7 | 纪文涛. 气粉两相混合体系爆炸及泄放特性研究[D]. 大连: 大连理工大学, 2018. |
Ji W T. Study on explosion and discharge characteristics of gas-powder two-phase mixed system[D]. Dalian: Dalian University of Technology, 2018. | |
8 | 林晨迪. 不同抑爆粉体对聚乙烯粉尘爆炸的抑制作用研究[D]. 焦作: 河南理工大学, 2020. |
Lin C D. Study on the inhibitory effect of different explosion suppression powders on polyethylene dust explosion[D]. Jiaozuo: Henan Polytechnic University, 2020. | |
9 | Lin S, Liu Z T, Qian J F, et al. Inertant effects and mechanism of Al(OH)3 powder on polyethylene dust explosions based on flame propagation behavior and thermal analysis[J]. Fire Safety Journal, 2021, 124: 103392. |
10 | Bu Y J, Ma Z P, Li C, et al. Effect of admixed solid inertants on dispersibility of combustible dust clouds in a modified Hartmann tube[J]. Process Safety and Environmental Protection, 2020, 135: 1-11. |
11 | 庞磊, 赵钰, 杨凯, 等. 低密度聚乙烯粉尘云爆炸敏感性实验[J]. 消防科学与技术, 2019, 38(9): 1211-1215. |
Pang L, Zhao Y, Yang K, et al. Experiment of explosion sensitivity on LDPE dust clouds[J]. Fire Science and Technology, 2019, 38(9): 1211-1215. | |
12 | 刘义, 赵东风, 路帅, 等. 聚乙烯粉体粒径对静电放电点火的影响[J]. 河北大学学报(自然科学版), 2007, 27(6): 625-629. |
Liu Y, Zhao D F, Lu S, et al. Effects of polyethylene size on ignition of electrostatics discharge[J]. Journal of Hebei University (Natural Science Edition), 2007, 27(6): 625-629. | |
13 | 刘义, 赵东风, 路帅, 等. 聚乙烯粉体输送系统安全可接受程度分析方法[J]. 石油化工高等学校学报, 2010, 23(2): 72-75. |
Liu Y, Zhao D F, Lu S, et al. Analysis method of acceptable safety degree on polyethylene dust conveying system[J]. Journal of Petrochemical Universities, 2010, 23(2): 72-75. | |
14 | 刘义, 赵东风, 路帅, 等. 可燃性气体对PE粉体静电放电点火的影响[J]. 合成树脂及塑料, 2008, 25(1): 20-22, 26. |
Liu Y, Zhao D F, Lu S, et al. Effect of combustible gas on ignition of PE dust electrostatics discharge[J]. China Synthetic Resin and Plastics, 2008, 25(1): 20-22, 26. | |
15 | Gan B, Li B, Jiang H, et al. Ethylene/polyethylene hybrid explosions(Ⅰ): Effects of ethylene concentrations on flame propagations[J]. Journal of Loss Prevention in the Process Industries, 2018, 54: 93-102. |
16 | 刘路. 聚乙烯粉尘燃爆特性研究[D]. 东营: 中国石油大学(华东), 2019. |
Liu L. Study on explosion characteristics of polyethylene dust[D]. Dongying: China University of Petroleum, 2019. | |
17 | 喻健良, 侯玉洁, 闫兴清, 等. 密闭空间内聚乙烯粉尘爆炸火焰传播特性的实验研究[J]. 化工学报, 2019, 70(3): 1227-1235. |
Yu J L, Hou Y J, Yan X Q, et al. Experimental study on flame propagation characteristic of polyethylene dust explosion under confined chamber[J]. CIESC Journal, 2019, 70(3): 1227-1235. | |
18 | 喻健良, 纪文涛, 孙会利, 等. 乙烯/聚乙烯两相体系爆炸特性[J]. 化工学报, 2017, 68(12): 4841-4847. |
Yu J L, Ji W T, Sun H L, et al. Explosibility of hybrid mixtures of ethylene and polyethylene dust[J]. CIESC Journal, 2017, 68(12): 4841-4847. | |
19 | 甘波. 乙烯/聚乙烯混合爆炸火焰传播机理研究[D]. 大连: 大连理工大学, 2020. |
Gan B. Study on flame propagation mechanism of ethylene/polyethylene mixed explosion[D]. Dalian: Dalian University of Technology, 2020. | |
20 | 梁一鸣, 贺锋, 张鏖, 等. 含磷酸盐对聚乙烯粉尘爆燃的抑制影响实验研究[J]. 中国安全生产科学技术, 2023, 19(4): 135-141. |
Liang Y M, He F, Zhang A, et al. Experimental study on inhibitory effect of phosphates on polyethylene dust deflagration[J]. Journal of Safety Science and Technology, 2023, 19(4): 135-141. | |
21 | 王燕, 何佳, 杨晶晶, 等. 草酸盐和碳酸氢盐抑制聚乙烯粉尘爆炸特性[J]. 化工学报, 2022, 73(9): 4207-4216. |
Wang Y, He J, Yang J J, et al. Inhibition of polyethylene dust explosion by oxalate and bicarbonate[J]. CIESC Journal, 2022, 73(9): 4207-4216. | |
22 | Wei L J, Su M Q, Wang K, et al. Suppression effects of ABC powder on explosion characteristics of hybrid C2H4/polyethylene dust[J]. Fuel, 2022, 310: 122159. |
23 | Zhang Y S, Pan Z C, Yang J J, et al. Study on the suppression mechanism of (NH4)2CO3 and SiC for polyethylene deflagration based on flame propagation and experimental analysis[J]. Powder Technology, 2022, 399: 117193. |
24 | Yuan B H, Sun Y R, Chen X F, et al. Poorly-/well-dispersed graphene: abnormal influence on flammability and fire behavior of intumescent flame retardant[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 345-354. |
25 | 纪文涛, 李璐, 李忠, 等. 聚磷酸铵抑制PMMA粉尘爆炸特性研究[J]. 化工学报, 2022, 73(1): 461-469. |
Ji W T, Li L, Li Z, et al. Study on suppression of PMMA dust explosion by ammonium polyphosphate[J]. CIESC Journal, 2022, 73(1): 461-469. | |
26 | Yang J, Yu Y, Li Y H, et al. Inerting effects of ammonium polyphosphate on explosion characteristics of polypropylene dust[J]. Process Safety and Environmental Protection, 2019, 130: 221-230. |
27 | Zhao Q, Li Y, Chen X F. Fire extinguishing and explosion suppression characteristics of explosion suppression system with N2/APP after methane/coal dust explosion[J]. Energy, 2022, 257: 124767. |
28 | Pang L, Cao J, Ma R, et al. Risk assessment method of polyethylene dust explosion based on explosion parameters[J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104397. |
29 | Yan X Q, Yu J L. Dust explosion venting of small vessels at the elevated static activation overpressure[J]. Powder Technology, 2014, 261: 250-256. |
30 | 鲁昆仑, 陈晓坤, 王媛媛, 等. 碳酸氢钠及其固态分解产物对玉米淀粉爆炸抑制实验研究[J]. 中国安全生产科学技术, 2021, 17(9): 126-131. |
Lu K L, Chen X K, Wang Y Y, et al. Experimental study on inhibition of cornstarch dust explosion with sodium bicarbonate and its solid decomposition product[J]. Journal of Safety Science and Technology, 2021, 17(9): 126-131. | |
31 | Qiu D Y, Chen X F, Hao L J, et al. Partial suppression of acetaminophen dust explosion by synergistic multiphase inhibitors[J]. Process Safety and Environmental Protection, 2023, 172: 262-272. |
32 | Huang C Y, Yuan B H, Zhang H M, et al. Investigation on thermokinetic suppression of ammonium polyphosphate on sucrose dust deflagration: based on flame propagation, thermal decomposition and residue analysis[J]. Journal of Hazardous Materials, 2021, 403: 123653. |
33 | Wang Y, Qi Y, Pei B, et al. Suppression of polyethylene dust explosion by sodium bicarbonate[J]. Powder Technology, 2020, 367: 206-212. |
34 | Alongi J, Han Z D, Bourbigot S. Intumescence: tradition versus novelty. A comprehensive review[J]. Progress in Polymer Science, 2015, 51: 28-73. |
35 | Wu Y, Meng X B, Zhang Y S, et al. Experimental study on the suppression of coal dust explosion by silica aerogel[J]. Energy, 2023, 267: 126372. |
36 | Guo R, Li N, Zhang X Y, et al. Suppression mechanism of micron/nano PMMA dust flame based on thermal analysis[J]. Advanced Powder Technology, 2022, 33(12): 103848. |
37 | Zhang G Y, Zhang Y S, Huang X W, et al. Effect of pyrolysis and oxidation characteristics on lauric acid and stearic acid dust explosion hazards[J]. Journal of Loss Prevention in the Process Industries, 2020, 63: 104039. |
38 | 王德明, 辛海会, 戚绪尧, 等. 煤自燃中的各种基元反应及相互关系: 煤氧化动力学理论及应用[J]. 煤炭学报, 2014, 39(8): 1667-1674. |
Wang D M, Xin H H, Qi X Y, et al. Mechanism and relationships of elementary reactions in spontaneous combustionof coal: the coal oxidation kinetics theory and application[J]. Journal of China Coal Society, 2014, 39(8): 1667-1674. | |
39 | Zhang Y, Cao W, Rao G, et al. Experiment-based investigations on the variation laws of functional groups on ignition energy of coal dusts[J]. Combustion Science and Technology, 2018, 190(10): 1850-1860. |
40 | Sun Y R, Yuan B H, Chen X F, et al. Suppression of methane/air explosion by kaolinite-based multi-component inhibitor[J]. Powder Technology, 2019, 343: 279-286. |
41 | 杨克, 王辰升, 纪虹, 等. 聚多巴胺包覆混合粉体抑制甲烷爆炸的实验研究[J]. 化工学报, 2022, 73(9): 4245-4254. |
Yang K, Wang C S, Ji H, et al. Experimental study on inhibition of methane explosion by polydopamine coated mixed powder[J]. CIESC Journal, 2022, 73(9): 4245-4254. | |
42 | 黄信达. 无卤环保新型APP阻燃剂制备与性能研究[D]. 昆明: 昆明理工大学, 2022. |
Huang X D. Study on preparation and properties of halogen-free environmental protection new APP flame retardant[D]. Kunming: Kunming University of Science and Technology, 2022. | |
43 | Lin H J, Yan H, Liu B, et al. The influence of KH-550 on properties of ammonium polyphosphate and polypropylene flame retardant composites[J]. Polymer Degradation and Stability, 2011, 96(7): 1382-1388. |
[1] | Weiqi JIN, Yuerong WU, Xia WANG, Li LI, Su QIU, Pan YUAN, Minghe WANG. Progress in infrared imaging detection technology and domestic equipment for industrial gas leakage in chemical industry parks [J]. CIESC Journal, 2023, 74(S1): 32-44. |
[2] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[3] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[4] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[5] | Ke YANG, Yue JIA, Hong JI, Zhixiang XING, Juncheng JIANG. Study on the inhibition effect and mechanism of waste incineration fly ash on gas explosion pressure and flame propagation [J]. CIESC Journal, 2023, 74(8): 3597-3607. |
[6] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[7] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[8] | Zhenbao LI, Chao LI, Hu WANG, Shaorui WANG, Quan LI. The microscopic mechanism on MPP inhibiting explosion of Al-Mg alloy powder [J]. CIESC Journal, 2023, 74(8): 3608-3614. |
[9] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[10] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[11] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[12] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[13] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[14] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[15] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||