CIESC Journal ›› 2023, Vol. 74 ›› Issue (10): 4319-4329.DOI: 10.11949/0438-1157.20230859
• Energy and environmental engineering • Previous Articles Next Articles
Ruizhe CHEN1(
), Yongfeng LIU1(
), Chenyang YIN1, Long WANG2, Lu ZHANG1, Jin’ou SONG3
Received:2023-08-18
Revised:2023-10-11
Online:2023-12-22
Published:2023-10-25
Contact:
Yongfeng LIU
陈睿哲1(
), 刘永峰1(
), 殷晨阳1, 王龙2, 张璐1, 宋金瓯3
通讯作者:
刘永峰
作者简介:陈睿哲(1999—),男,硕士研究生,1394592104@qq.com
基金资助:CLC Number:
Ruizhe CHEN, Yongfeng LIU, Chenyang YIN, Long WANG, Lu ZHANG, Jin’ou SONG. Study of the mechanism of pyrolysis of n-hexane initiated by 1-nitropropane[J]. CIESC Journal, 2023, 74(10): 4319-4329.
陈睿哲, 刘永峰, 殷晨阳, 王龙, 张璐, 宋金瓯. 1-硝基丙烷引发正己烷热解的机理研究[J]. 化工学报, 2023, 74(10): 4319-4329.
Add to citation manager EndNote|Ris|BibTeX
| m/z | 化学式 | IEs/eV | TF /K | TM /K | XM/10-4 |
|---|---|---|---|---|---|
| 15 | CH3 | 9.82 | 773 | 1103 | 9.751 |
| 16 | CH4 | — | 863 | 1103 | 35.06 |
| 26 | C2H2 | 11.37 | 983 | 1103 | 33.90 |
| 28 | CO | — | 773 | 1103 | 6.128 |
| 28 | C2H4 | 10.51 | 723 | 1103 | 620.5 |
| 29 | C2H5 | 8.31 | 823 | 873 | 0.129 |
| 30 | NO | 9.24 | 673 | 1073 | 7.472 |
| 30 | CH2O | 10.83 | 673 | 1023 | 3.448 |
| 30 | C2H6 | 11.50 | 773 | 1103 | 32.86 |
| 32 | CH3OH | 10.81 | 773 | 1023 | 1.220 |
| 39 | C3H3 | 8.69 | 1103 | 1103 | 0.122 |
| 40 | CH2 | 9.69 | 1023 | 1103 | 2.239 |
| 40 | CH3C≡CH | 10.32 | 1103 | 1103 | 0.729 |
| 41 | C3H5 | 8.07 | 1023 | 1103 | 19.11 |
| 42 | C3H6 | 9.74 | 673 | 1103 | 16.45 |
| 44 | C3H8 | 11.02 | 903 | 1103 | 8.057 |
| 46 | NO2 | 9.80 | 673 | 923 | 2.270 |
| 52 | C4H4 | 9.52 | 1103 | 1103 | 3.612 |
| 54 | C4H6 | 9.04 | 1023 | 1103 | 2.966 |
| 56 | CH3CH2CH | 9.58 | 673 | 1103 | 7.240 |
| 56 | CH3CH | 9.09 | 903 | 1103 | 0.732 |
| 66 | C5H6 | 8.54 | 1103 | 1103 | 0.276 |
| 68 | C5H8 | 8.60 | 1023 | 1103 | 0.134 |
| 70 | CH3CH2CH2CH | 9.51 | 863 | 1103 | 0.783 |
| 70 | CH3CH2CH | 9.04 | 943 | 1103 | 0.275 |
| 78 | C6H6 | 9.25 | 1103 | 1103 | 10.66 |
| 80 | C6H8 | 8.24 | 1103 | 1103 | 0.0935 |
| 82 | C6H10 | 8.54 | 1103 | 1103 | 0.0319 |
| 84 | C6H12 | 8.97 | 983 | 1103 | 1.129 |
Table 1 IEs, TF, TM and XM of pyrolysis products
| m/z | 化学式 | IEs/eV | TF /K | TM /K | XM/10-4 |
|---|---|---|---|---|---|
| 15 | CH3 | 9.82 | 773 | 1103 | 9.751 |
| 16 | CH4 | — | 863 | 1103 | 35.06 |
| 26 | C2H2 | 11.37 | 983 | 1103 | 33.90 |
| 28 | CO | — | 773 | 1103 | 6.128 |
| 28 | C2H4 | 10.51 | 723 | 1103 | 620.5 |
| 29 | C2H5 | 8.31 | 823 | 873 | 0.129 |
| 30 | NO | 9.24 | 673 | 1073 | 7.472 |
| 30 | CH2O | 10.83 | 673 | 1023 | 3.448 |
| 30 | C2H6 | 11.50 | 773 | 1103 | 32.86 |
| 32 | CH3OH | 10.81 | 773 | 1023 | 1.220 |
| 39 | C3H3 | 8.69 | 1103 | 1103 | 0.122 |
| 40 | CH2 | 9.69 | 1023 | 1103 | 2.239 |
| 40 | CH3C≡CH | 10.32 | 1103 | 1103 | 0.729 |
| 41 | C3H5 | 8.07 | 1023 | 1103 | 19.11 |
| 42 | C3H6 | 9.74 | 673 | 1103 | 16.45 |
| 44 | C3H8 | 11.02 | 903 | 1103 | 8.057 |
| 46 | NO2 | 9.80 | 673 | 923 | 2.270 |
| 52 | C4H4 | 9.52 | 1103 | 1103 | 3.612 |
| 54 | C4H6 | 9.04 | 1023 | 1103 | 2.966 |
| 56 | CH3CH2CH | 9.58 | 673 | 1103 | 7.240 |
| 56 | CH3CH | 9.09 | 903 | 1103 | 0.732 |
| 66 | C5H6 | 8.54 | 1103 | 1103 | 0.276 |
| 68 | C5H8 | 8.60 | 1023 | 1103 | 0.134 |
| 70 | CH3CH2CH2CH | 9.51 | 863 | 1103 | 0.783 |
| 70 | CH3CH2CH | 9.04 | 943 | 1103 | 0.275 |
| 78 | C6H6 | 9.25 | 1103 | 1103 | 10.66 |
| 80 | C6H8 | 8.24 | 1103 | 1103 | 0.0935 |
| 82 | C6H10 | 8.54 | 1103 | 1103 | 0.0319 |
| 84 | C6H12 | 8.97 | 983 | 1103 | 1.129 |
| 反应体系 | 指前因子/s-1 | 表观活化能/(kJ·mol-1) |
|---|---|---|
| n-C6H14 | 6555.11 | 290.7 |
| 1-NP/n-C6H14 | 14.84 | 139.6 |
Table 2 Arrhenius parameters of the reaction
| 反应体系 | 指前因子/s-1 | 表观活化能/(kJ·mol-1) |
|---|---|---|
| n-C6H14 | 6555.11 | 290.7 |
| 1-NP/n-C6H14 | 14.84 | 139.6 |
| 1 | 苏存要, 连文磊, 郝鑫, 等. 航空发动机附件综合热管理性能分析[J]. 航空动力学报, 2022, 37(9): 1896-1904. |
| Su C Y, Lian W L, Hao X, et al. Analysis of comprehensive thermal management performance of aero-engine accessories[J]. Journal of Aerospace Power, 2022, 37(9): 1896-1904. | |
| 2 | Zhang S L, Qin J, Bao W, et al. Thermal management of fuel in advanced aeroengine in view of chemical recuperation[J]. Energy, 2014, 77: 201-211. |
| 3 | Cao X M, Gong C M, Liu J W, et al. Development of a detailed pyrolysis mechanism for C1—C4 hydrocarbons under a wide range of temperature and pressure[J]. International Journal of Chemical Kinetics, 2020, 52(11): 796-821. |
| 4 | Watanabe M, Tsukagoshi M, Hirakoso H, et al. Kinetics and product distribution of n-hexadecane pyrolysis[J]. AIChE Journal, 2000, 46(4): 843-856. |
| 5 | Tian K, Yang P, Klemeš J, et al. Effect of pressure on regenerative cooling process of endothermic hydrocarbon fuel at severe pyrolysis conditions[J]. Aerospace Science and Technology, 2023, 138:108357. |
| 6 | Zeng Q H, Chen X W. Combustor technology of high temperature rise for aero engine[J]. Progress in Aerospace Sciences, 2023, 140: 100927. |
| 7 | Priyadarshi S, Kishore M S N, Vinu R. Analytical pyrolysis of jet fuel using different free radical initiators to produce low molecular weight hydrocarbons[J]. Journal of Analytical and Applied Pyrolysis, 2022, 162: 105430. |
| 8 | 翟连杰, 张俊林, 张家荣, 等. N—F键调控的高能量密度化合物合成与性能研究进展[J]. 有机化学, 2020, 40(6): 1484-1501. |
| Zhai L J, Zhang J L, Zhang J R, et al. Advances in the synthesis and properties of high energy density compounds regulated by N—F bonds[J]. Chinese Journal of Organic Chemistry, 2020, 40(6): 1484-1501. | |
| 9 | Guan Y L, Yang B L, Qi S T, et al. Kinetic modeling of the free-radical process during the initiated thermal cracking of normal alkanes with 1-nitropropane as an initiator[J]. Industrial & Engineering Chemistry Research, 2011, 50(15): 9054-9062. |
| 10 | Liu G Z, Han Y J, Guo W, et al. Supercritical initiative cracking of endothermic fuel model compound n-dodecane with 1-nitroprapane[C]//Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Hartford, CT, Reston, Virigina: AIAA, 2008: AIAA2008-5127. |
| 11 | Liu G Z, Han Y J, Wang L, et al. Supercritical thermal cracking of n-dodecane in presence of several initiative additives: products distribution and kinetics[J]. Energy & Fuels, 2008, 22(6): 3960-3969. |
| 12 | Jia Z J, Zhou W X, Yu W L, et al. Experimental investigation on pyrolysis of n-decane initiated by nitropropane under supercritical pressure in a miniature tube[J]. Energy & Fuels, 2019, 33(6): 5529-5537. |
| 13 | Jia Z J, Yang J Z, Zhou W X, et al. Experimental and modeling investigation on the pyrolysis of n-decane initiated by nitropropane (part Ⅰ): 1-Nitropropane[J]. ACS Omega, 2023, 8(17): 15384-15396. |
| 14 | Zheng F J, Wan K, Huang F R, et al. Assessing pyrolysis behavior of silicon-containing arylacetylene resin via experiments and ReaxFF MD simulations[J]. Journal of Analytical and Applied Pyrolysis, 2022, 164: 105528. |
| 15 | Liu H, Liang J H, He R N, et al. Overall mechanism of JP-10 pyrolysis unraveled by large-scale reactive molecular dynamics simulation[J]. Combustion and Flame, 2022, 237: 111865. |
| 16 | 黎家驹, 许全宏, 刘桂桂, 等. 气态/超临界态RP-3航空煤油喷嘴内部流动可视化研究[J]. 推进技术, 2023, 44(2): 228-236. |
| Li J J, Xu Q H, Liu G G, et al. Visualization study on internal flow of gas/supercritical RP-3 aviation kerosene nozzle[J]. Journal of Propulsion Technology, 2023, 44(2): 228-236. | |
| 17 | Qi F. Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry[J]. Proceedings of the Combustion Institute, 2013, 34(1): 33-63. |
| 18 | Xu Q, Liu B Z, Chen W Y, et al. Comprehensive study of the low-temperature oxidation chemistry by synchrotron photoionization mass spectrometry and gas chromatography[J]. Combustion and Flame, 2022, 236: 111797. |
| 19 | Zhang T C, Zhang L D, Hong X, et al. An experimental and theoretical study of toluene pyrolysis with tunable synchrotron VUV photoionization and molecular-beam mass spectrometry[J]. Combustion and Flame, 2009, 156(11): 2071-2083. |
| 20 | Zhou Z Y, Zhang L D, Xie M F, et al. Determination of absolute photoionization cross-sections of alkanes and cyclo-alkanes[J]. Rapid Communications in Mass Spectrometry, 2010, 24(9): 1335-1342. |
| 21 | Senftle T P, Hong S, Islam M M, et al. The ReaxFF reactive force-field: development, applications and future directions[J]. NPJ Computational Materials, 2016, 2: 15011. |
| 22 | 陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857. |
| Chen Y G, Chen H, Huang Y S. Study on pyrolysis mechanism of hexamethyldisiloxane based on molecular reaction dynamics simulation[J]. CIESC Journal, 2022, 73(7): 2844-2857. | |
| 23 | Luo Q F, Bai Y H, Wei J T, et al. Insights into the oxygen-containing groups transformation during coal char gasification in H2O/CO2 atmosphere by using ReaxFF reactive force field[J]. Journal of the Energy Institute, 2023, 109: 101293. |
| 24 | 郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741. |
| Zheng M, Li X X. Revealing reaction compromise in competition for volatile radicals during coal pryolysis via ReaxFF MD simulation[J]. CIESC Journal, 2022, 73(6): 2732-2741. | |
| 25 | Yang M, Wang Q P, Ding M Y, et al. Exploring the pyrolysis chemistry of 1, 3, 5-trimethylcyclohexane with insight into fuel isomeric and multiple substitution effects[J]. Proceedings of the Combustion Institute, 2023, 39(1): 169-178. |
| 26 | 温燕军, 蒋驰, 李文轩, 等. 含油污泥各组分热解相互作用的反应力场模拟研究[J]. 化工学报, 2021, 72(2): 1100-1106. |
| Wen Y J, Jiang C, Li W X, et al. Study on reaction force field simulation of pyrolysis interaction among components of oily sludge[J]. CIESC Journal, 2021, 72(2): 1100-1106. | |
| 27 | Gao M J, Li X X, Ren C X, et al. Construction of a multicomponent molecular model of Fugu coal for ReaxFF-MD pyrolysis simulation[J]. Energy & Fuels, 2019, 33(4): 2848-2858. |
| 28 | Guan Y, Lou J P, Liu R, et al. Reactive molecular dynamics simulation on thermal decomposition of n-heptane and methylcyclohexane initiated by nitroethane[J]. Fuel, 2020, 261: 116447. |
| 29 | Yasunaga K, Yamada H, Oshita H, et al. Pyrolysis of n-pentane, n-hexane and n-heptane in a single pulse shock tube[J]. Combustion and Flame, 2017, 185: 335-345. |
| 30 | 于冬雪, 惠贺龙, 何京东, 等. 塑料与蜡(重油)催化共热解相互作用研究[J]. 化工学报, 2019, 70(8): 2971-2980. |
| Yu D X, Hui H L, He J D, et al. Study on interaction between plastic with wax (heavy oil) in process of catalytic co-pyrolysis[J]. CIESC Journal, 2019, 70(8): 2971-2980. | |
| 31 | Dominé F, Dessort D, Brévart O. Towards a new method of geochemical kinetic modelling: implications for the stability of crude oils[J]. Organic Geochemistry, 1998, 28(9/10): 597-612. |
| 32 | Power J, Somers K P, Nagaraja S S, et al. Theoretical study of the reaction of hydrogen atoms with three pentene isomers: 2-methyl-1-butene, 2-methyl-2-butene, and 3-methyl-1-butene[J]. The Journal of Physical Chemistry A, 2020, 124(51): 10649-10666. |
| 33 | Zhang K W, Banyon C, Togbé C, et al. An experimental and kinetic modeling study of n-hexane oxidation[J]. Combustion and Flame, 2015, 162(11): 4194-4207. |
| [1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
| [2] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
| [3] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
| [4] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
| [5] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
| [6] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
| [7] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
| [8] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
| [9] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
| [10] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
| [11] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
| [12] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
| [13] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
| [14] | Yangguang LYU, Peipei ZUO, Zhengjin YANG, Tongwen XU. Triazine framework polymer membranes for methanol/n-hexane separation via organic solvent nanofiltration [J]. CIESC Journal, 2023, 74(4): 1598-1606. |
| [15] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||