CIESC Journal ›› 2023, Vol. 74 ›› Issue (10): 4037-4050.DOI: 10.11949/0438-1157.20230656
• Thermodynamics • Previous Articles Next Articles
Zhi ZHENG1(), Naisheng GUO1(), Zhanping YOU2, Jiawei WANG1
Received:
2023-06-30
Revised:
2023-09-20
Online:
2023-12-22
Published:
2023-10-25
Contact:
Naisheng GUO
通讯作者:
郭乃胜
作者简介:
郑直(1997—),男,博士研究生,zhizheng@dlmu.edu.cn
基金资助:
CLC Number:
Zhi ZHENG, Naisheng GUO, Zhanping YOU, Jiawei WANG. Research on compatibility mechanisms between waste wood oil and petroleum asphalt through molecular dynamics[J]. CIESC Journal, 2023, 74(10): 4037-4050.
郑直, 郭乃胜, 尤占平, 王家伟. 废木油与石油沥青相容机制的分子动力学研究[J]. 化工学报, 2023, 74(10): 4037-4050.
Add to citation manager EndNote|Ris|BibTeX
材料 | 热力学判据 | 计算结果 | 试验/模拟结果 |
---|---|---|---|
石油 沥青 | 密度 (298 K, 1 atm)/(g·cm-3) | 0.997 | 0.95~1.04[ |
CEDtotal/(108 J·m-3) | 3.219 | 3.19~3.32[ | |
δ/(J·cm-3)1/2 | 17.931 | 17.55[ | |
WWO | 密度 (298 K, 1 atm)/(g·cm-3) | 1.059 | 1.09[ |
CEDtotal/(108 J·m-3) | 4.331 | — | |
δ/(J·cm-3)1/2 | 21.060 | 21.25[ | |
生物 沥青 | 密度 (298 K, 1 atm)/(g·cm-3) | 1.001 | 0.99[ |
CEDtotal/(108 J·m-3) | 3.272 | — | |
δ/(J·cm-3)1/2 | 18.086 | — |
Table 1 Comparison of thermodynamic parameters
材料 | 热力学判据 | 计算结果 | 试验/模拟结果 |
---|---|---|---|
石油 沥青 | 密度 (298 K, 1 atm)/(g·cm-3) | 0.997 | 0.95~1.04[ |
CEDtotal/(108 J·m-3) | 3.219 | 3.19~3.32[ | |
δ/(J·cm-3)1/2 | 17.931 | 17.55[ | |
WWO | 密度 (298 K, 1 atm)/(g·cm-3) | 1.059 | 1.09[ |
CEDtotal/(108 J·m-3) | 4.331 | — | |
δ/(J·cm-3)1/2 | 21.060 | 21.25[ | |
生物 沥青 | 密度 (298 K, 1 atm)/(g·cm-3) | 1.001 | 0.99[ |
CEDtotal/(108 J·m-3) | 3.272 | — | |
δ/(J·cm-3)1/2 | 18.086 | — |
温度/K | CEDtotal/ (J·cm-3) | CEDvdW/ (J·cm-3) | CEDele/ (J·cm-3) | CEDother/ (J·cm-3) |
---|---|---|---|---|
373 | 294.900 | 277.600 | 2.030 | 15.250 |
393 | 286.700 | 269.800 | 1.920 | 14.950 |
413 | 280.400 | 264.100 | 1.706 | 14.66 |
433 | 273.400 | 257.100 | 1.855 | 14.410 |
453 | 266.100 | 250.500 | 1.415 | 14.150 |
Table 2 CEDs of petroleum asphalt
温度/K | CEDtotal/ (J·cm-3) | CEDvdW/ (J·cm-3) | CEDele/ (J·cm-3) | CEDother/ (J·cm-3) |
---|---|---|---|---|
373 | 294.900 | 277.600 | 2.030 | 15.250 |
393 | 286.700 | 269.800 | 1.920 | 14.950 |
413 | 280.400 | 264.100 | 1.706 | 14.66 |
433 | 273.400 | 257.100 | 1.855 | 14.410 |
453 | 266.100 | 250.500 | 1.415 | 14.150 |
温度/K | δvdW/ (J·cm-3)1/2 | δele/ (J·cm-3)1/2 | δother/ (J·cm-3)1/2 | δHansen/ (J·cm-3)1/2 |
---|---|---|---|---|
373 | 16.657 | 1.418 | 3.905 | 17.167 |
393 | 16.420 | 1.380 | 3.866 | 16.925 |
413 | 16.243 | 1.279 | 3.828 | 16.737 |
433 | 16.028 | 1.337 | 3.795 | 16.525 |
453 | 15.818 | 1.172 | 3.761 | 16.301 |
Table 3 Solubility parameters of petroleum asphalt
温度/K | δvdW/ (J·cm-3)1/2 | δele/ (J·cm-3)1/2 | δother/ (J·cm-3)1/2 | δHansen/ (J·cm-3)1/2 |
---|---|---|---|---|
373 | 16.657 | 1.418 | 3.905 | 17.167 |
393 | 16.420 | 1.380 | 3.866 | 16.925 |
413 | 16.243 | 1.279 | 3.828 | 16.737 |
433 | 16.028 | 1.337 | 3.795 | 16.525 |
453 | 15.818 | 1.172 | 3.761 | 16.301 |
WWO的 掺量/% | 温度/K | δvdW/ (J·cm-3)1/2 | δele/ (J·cm-3)1/2 | δother/ (J·cm-3)1/2 | δHansen/ (J·cm-3)1/2 |
---|---|---|---|---|---|
5 | 373 | 17.465 | 7.300 | 3.762 | 19.299 |
393 | 17.016 | 7.207 | 3.692 | 18.845 | |
413 | 17.100 | 7.395 | 3.709 | 18.996 | |
433 | 16.555 | 7.126 | 3.646 | 18.389 | |
453 | 16.101 | 6.332 | 3.533 | 17.658 | |
10 | 373 | 17.360 | 7.391 | 3.762 | 19.239 |
393 | 16.984 | 7.536 | 3.693 | 18.944 | |
413 | 16.666 | 7.117 | 3.645 | 18.485 | |
433 | 16.461 | 6.838 | 3.586 | 18.182 | |
453 | 16.120 | 6.635 | 3.514 | 17.783 | |
15 | 373 | 17.596 | 7.724 | 3.802 | 19.589 |
393 | 17.167 | 7.437 | 3.724 | 19.076 | |
413 | 16.547 | 6.867 | 3.605 | 18.274 | |
433 | 16.505 | 6.916 | 3.606 | 18.255 | |
453 | 16.077 | 6.719 | 18.255 | 17.780 | |
20 | 373 | 17.347 | 7.715 | 3.751 | 19.352 |
393 | 17.198 | 7.501 | 3.731 | 19.130 | |
413 | 16.713 | 7.136 | 3.641 | 18.534 | |
433 | 16.339 | 7.093 | 3.590 | 18.170 | |
453 | 15.982 | 6.518 | 3.527 | 17.617 |
Table 4 Solubility parameters of WWO
WWO的 掺量/% | 温度/K | δvdW/ (J·cm-3)1/2 | δele/ (J·cm-3)1/2 | δother/ (J·cm-3)1/2 | δHansen/ (J·cm-3)1/2 |
---|---|---|---|---|---|
5 | 373 | 17.465 | 7.300 | 3.762 | 19.299 |
393 | 17.016 | 7.207 | 3.692 | 18.845 | |
413 | 17.100 | 7.395 | 3.709 | 18.996 | |
433 | 16.555 | 7.126 | 3.646 | 18.389 | |
453 | 16.101 | 6.332 | 3.533 | 17.658 | |
10 | 373 | 17.360 | 7.391 | 3.762 | 19.239 |
393 | 16.984 | 7.536 | 3.693 | 18.944 | |
413 | 16.666 | 7.117 | 3.645 | 18.485 | |
433 | 16.461 | 6.838 | 3.586 | 18.182 | |
453 | 16.120 | 6.635 | 3.514 | 17.783 | |
15 | 373 | 17.596 | 7.724 | 3.802 | 19.589 |
393 | 17.167 | 7.437 | 3.724 | 19.076 | |
413 | 16.547 | 6.867 | 3.605 | 18.274 | |
433 | 16.505 | 6.916 | 3.606 | 18.255 | |
453 | 16.077 | 6.719 | 18.255 | 17.780 | |
20 | 373 | 17.347 | 7.715 | 3.751 | 19.352 |
393 | 17.198 | 7.501 | 3.731 | 19.130 | |
413 | 16.713 | 7.136 | 3.641 | 18.534 | |
433 | 16.339 | 7.093 | 3.590 | 18.170 | |
453 | 15.982 | 6.518 | 3.527 | 17.617 |
材料 | 不同温度条件下的非键合势能/(kcal·mol-1) | ||||
---|---|---|---|---|---|
373 K | 393 K | 413 K | 433 K | 453 K | |
石油沥青 | -1758.562 | -1718.914 | -1663.052 | -1600.278 | -1499.925 |
WWO(5%掺量) | -125.470 | -133.442 | -122.356 | -111.762 | -108.312 |
WWO(10%掺量) | -281.077 | -283.363 | -261.380 | -287.596 | -276.378 |
WWO(15%掺量) | -536.970 | -453.416 | -409.818 | -443.270 | -411.364 |
WWO(20%掺量) | -783.450 | -692.534 | -658.661 | -620.967 | -614.154 |
5%(质量)生物沥青 | -1916.882 | -1904.639 | -1815.324 | -1765.670 | -1689.757 |
10%(质量)生物沥青 | -1991.999 | -1963.679 | -1940.830 | -1859.887 | -1765.198 |
15%(质量)生物沥青 | -2248.459 | -2133.305 | -2117.801 | -2033.982 | -1954.275 |
20%(质量)生物沥青 | -2439.912 | -2305.558 | -2273.934 | -2155.093 | -2087.729 |
Table 5 Non-bonding potential energy
材料 | 不同温度条件下的非键合势能/(kcal·mol-1) | ||||
---|---|---|---|---|---|
373 K | 393 K | 413 K | 433 K | 453 K | |
石油沥青 | -1758.562 | -1718.914 | -1663.052 | -1600.278 | -1499.925 |
WWO(5%掺量) | -125.470 | -133.442 | -122.356 | -111.762 | -108.312 |
WWO(10%掺量) | -281.077 | -283.363 | -261.380 | -287.596 | -276.378 |
WWO(15%掺量) | -536.970 | -453.416 | -409.818 | -443.270 | -411.364 |
WWO(20%掺量) | -783.450 | -692.534 | -658.661 | -620.967 | -614.154 |
5%(质量)生物沥青 | -1916.882 | -1904.639 | -1815.324 | -1765.670 | -1689.757 |
10%(质量)生物沥青 | -1991.999 | -1963.679 | -1940.830 | -1859.887 | -1765.198 |
15%(质量)生物沥青 | -2248.459 | -2133.305 | -2117.801 | -2033.982 | -1954.275 |
20%(质量)生物沥青 | -2439.912 | -2305.558 | -2273.934 | -2155.093 | -2087.729 |
材料 | 不同温度条件下的范德华势能/(kcal·mol-1) | ||||
---|---|---|---|---|---|
373 K | 393 K | 413 K | 433 K | 453 K | |
石油沥青 | -759.607 | -725.929 | -686.623 | -602.241 | -514.023 |
WWO(5%掺量) | -39.790 | -49.440 | -33.516 | -28.550 | -25.162 |
WWO(10%掺量) | -98.148 | -91.361 | -77.363 | -88.677 | -86.684 |
WWO(15%掺量) | -165.873 | -141.611 | -115.942 | -121.789 | -122.797 |
WWO(20%掺量) | -314.917 | -250.854 | -195.877 | -181.072 | -177.741 |
5%(质量)生物沥青 | -841.269 | -819.938 | -756.353 | -676.671 | -628.023 |
10%(质量)生物沥青 | -887.596 | -850.359 | -840.207 | -743.047 | -665.638 |
15%(质量)生物沥青 | -918.101 | -864.833 | -863.260 | -752.853 | -695.028 |
20%(质量)生物沥青 | -1013.980 | -915.288 | -857.545 | -754.494 | -699.736 |
Table 6 van der Waals potential energy
材料 | 不同温度条件下的范德华势能/(kcal·mol-1) | ||||
---|---|---|---|---|---|
373 K | 393 K | 413 K | 433 K | 453 K | |
石油沥青 | -759.607 | -725.929 | -686.623 | -602.241 | -514.023 |
WWO(5%掺量) | -39.790 | -49.440 | -33.516 | -28.550 | -25.162 |
WWO(10%掺量) | -98.148 | -91.361 | -77.363 | -88.677 | -86.684 |
WWO(15%掺量) | -165.873 | -141.611 | -115.942 | -121.789 | -122.797 |
WWO(20%掺量) | -314.917 | -250.854 | -195.877 | -181.072 | -177.741 |
5%(质量)生物沥青 | -841.269 | -819.938 | -756.353 | -676.671 | -628.023 |
10%(质量)生物沥青 | -887.596 | -850.359 | -840.207 | -743.047 | -665.638 |
15%(质量)生物沥青 | -918.101 | -864.833 | -863.260 | -752.853 | -695.028 |
20%(质量)生物沥青 | -1013.980 | -915.288 | -857.545 | -754.494 | -699.736 |
材料 | 不同温度条件下的静电势能/(kcal·mol-1) | ||||
---|---|---|---|---|---|
373 K | 393 K | 413 K | 433 K | 453 K | |
石油沥青 | -874.22 | -869.614 | -874.087 | -877.732 | -866.133 |
WWO(5%掺量) | -90.322 | -78.269 | -82.964 | -77.902 | -77.854 |
WWO(10%掺量) | -180.55 | -179.946 | -172.074 | -186.475 | -177.953 |
WWO(15%掺量) | -301.387 | -291.773 | -284.29 | -282.828 | -270.014 |
WWO(20%掺量) | -448.278 | -413.013 | -424.748 | -412.866 | -409.898 |
5%(质量)生物沥青 | -934.607 | -953.636 | -949.851 | -936.911 | -936.341 |
10%(质量)生物沥青 | -1026.178 | -1016.793 | -1025.677 | -1026.704 | -1018.471 |
15%(质量)生物沥青 | -1155.729 | -1126.134 | -1133.649 | -1113.088 | -1110.697 |
20%(质量)生物沥青 | -1243.118 | -1232.91 | -1219.655 | -1223.885 | -1242.342 |
Table 7 Electrostatic potential energy
材料 | 不同温度条件下的静电势能/(kcal·mol-1) | ||||
---|---|---|---|---|---|
373 K | 393 K | 413 K | 433 K | 453 K | |
石油沥青 | -874.22 | -869.614 | -874.087 | -877.732 | -866.133 |
WWO(5%掺量) | -90.322 | -78.269 | -82.964 | -77.902 | -77.854 |
WWO(10%掺量) | -180.55 | -179.946 | -172.074 | -186.475 | -177.953 |
WWO(15%掺量) | -301.387 | -291.773 | -284.29 | -282.828 | -270.014 |
WWO(20%掺量) | -448.278 | -413.013 | -424.748 | -412.866 | -409.898 |
5%(质量)生物沥青 | -934.607 | -953.636 | -949.851 | -936.911 | -936.341 |
10%(质量)生物沥青 | -1026.178 | -1016.793 | -1025.677 | -1026.704 | -1018.471 |
15%(质量)生物沥青 | -1155.729 | -1126.134 | -1133.649 | -1113.088 | -1110.697 |
20%(质量)生物沥青 | -1243.118 | -1232.91 | -1219.655 | -1223.885 | -1242.342 |
掺量/% | 温度/K | 总体积/Å3 | 探针半径为0 | 探针半径为1.45 Å | ||||
---|---|---|---|---|---|---|---|---|
占有体积/Å3 | 自由体积/Å3 | FFV/% | 占有体积/Å3 | 自由体积/Å3 | FFV/% | |||
0 | 373 | 55897.30 | 34168.08 | 21729.19 | 0.389 | 50367.41 | 5529.85 | 0.099 |
393 | 56515.60 | 34215.70 | 22299.87 | 0.395 | 50475.66 | 6039.91 | 0.107 | |
413 | 56779.70 | 34179.36 | 22600.35 | 0.398 | 50429.71 | 6350.00 | 0.112 | |
433 | 57955.80 | 34147.89 | 23807.94 | 0.411 | 50175.51 | 7780.31 | 0.134 | |
453 | 58215.50 | 34183.75 | 24031.80 | 0.413 | 50395.40 | 7820.15 | 0.134 | |
5 | 373 | 58473.20 | 35781.83 | 22691.39 | 0.388 | 52718.97 | 5754.25 | 0.098 |
393 | 58447.20 | 35793.75 | 22653.44 | 0.388 | 52847.22 | 5599.97 | 0.096 | |
413 | 60127.70 | 35851.98 | 24275.71 | 0.404 | 52753.74 | 7373.95 | 0.123 | |
433 | 60276.80 | 35830.73 | 24446.02 | 0.406 | 52812.86 | 7463.89 | 0.124 | |
453 | 61091.20 | 35880.32 | 25210.89 | 0.413 | 53008.19 | 8083.01 | 0.132 | |
10 | 373 | 61604.10 | 37753.99 | 23850.15 | 0.387 | 55558.64 | 6045.50 | 0.098 |
393 | 62370.30 | 37755.56 | 24614.72 | 0.395 | 56074.90 | 6295.39 | 0.101 | |
413 | 63100.40 | 37760.69 | 25339.70 | 0.402 | 56023.92 | 7076.47 | 0.112 | |
433 | 63958.60 | 37694.23 | 26264.35 | 0.411 | 55754.16 | 8204.41 | 0.128 | |
453 | 64957.20 | 37794.76 | 27162.45 | 0.418 | 56231.43 | 8725.77 | 0.134 | |
15 | 373 | 65590.70 | 39805.39 | 25785.34 | 0.393 | 59195.11 | 6395.62 | 0.098 |
393 | 66646.70 | 39848.23 | 26798.49 | 0.402 | 59394.19 | 7252.52 | 0.109 | |
413 | 67330.30 | 39821.08 | 27509.20 | 0.409 | 59012.69 | 8317.59 | 0.124 | |
433 | 67259.40 | 39946.09 | 27313.26 | 0.406 | 59205.61 | 8053.74 | 0.120 | |
453 | 68468.80 | 39901.81 | 28566.96 | 0.417 | 59280.48 | 9188.29 | 0.134 | |
20 | 373 | 69760.10 | 42256.49 | 27503.62 | 0.394 | 62985.57 | 6774.54 | 0.097 |
393 | 70430.70 | 42282.62 | 28148.04 | 0.400 | 63191.32 | 7239.34 | 0.103 | |
413 | 72651.20 | 42286.11 | 30365.11 | 0.418 | 62507.87 | 10143.35 | 0.140 | |
433 | 72661.00 | 42280.62 | 30380.37 | 0.418 | 62901.47 | 9759.52 | 0.134 | |
453 | 73191.70 | 42273.55 | 30918.19 | 0.422 | 62904.99 | 10286.75 | 0.141 |
Table 8 Volume information of the model
掺量/% | 温度/K | 总体积/Å3 | 探针半径为0 | 探针半径为1.45 Å | ||||
---|---|---|---|---|---|---|---|---|
占有体积/Å3 | 自由体积/Å3 | FFV/% | 占有体积/Å3 | 自由体积/Å3 | FFV/% | |||
0 | 373 | 55897.30 | 34168.08 | 21729.19 | 0.389 | 50367.41 | 5529.85 | 0.099 |
393 | 56515.60 | 34215.70 | 22299.87 | 0.395 | 50475.66 | 6039.91 | 0.107 | |
413 | 56779.70 | 34179.36 | 22600.35 | 0.398 | 50429.71 | 6350.00 | 0.112 | |
433 | 57955.80 | 34147.89 | 23807.94 | 0.411 | 50175.51 | 7780.31 | 0.134 | |
453 | 58215.50 | 34183.75 | 24031.80 | 0.413 | 50395.40 | 7820.15 | 0.134 | |
5 | 373 | 58473.20 | 35781.83 | 22691.39 | 0.388 | 52718.97 | 5754.25 | 0.098 |
393 | 58447.20 | 35793.75 | 22653.44 | 0.388 | 52847.22 | 5599.97 | 0.096 | |
413 | 60127.70 | 35851.98 | 24275.71 | 0.404 | 52753.74 | 7373.95 | 0.123 | |
433 | 60276.80 | 35830.73 | 24446.02 | 0.406 | 52812.86 | 7463.89 | 0.124 | |
453 | 61091.20 | 35880.32 | 25210.89 | 0.413 | 53008.19 | 8083.01 | 0.132 | |
10 | 373 | 61604.10 | 37753.99 | 23850.15 | 0.387 | 55558.64 | 6045.50 | 0.098 |
393 | 62370.30 | 37755.56 | 24614.72 | 0.395 | 56074.90 | 6295.39 | 0.101 | |
413 | 63100.40 | 37760.69 | 25339.70 | 0.402 | 56023.92 | 7076.47 | 0.112 | |
433 | 63958.60 | 37694.23 | 26264.35 | 0.411 | 55754.16 | 8204.41 | 0.128 | |
453 | 64957.20 | 37794.76 | 27162.45 | 0.418 | 56231.43 | 8725.77 | 0.134 | |
15 | 373 | 65590.70 | 39805.39 | 25785.34 | 0.393 | 59195.11 | 6395.62 | 0.098 |
393 | 66646.70 | 39848.23 | 26798.49 | 0.402 | 59394.19 | 7252.52 | 0.109 | |
413 | 67330.30 | 39821.08 | 27509.20 | 0.409 | 59012.69 | 8317.59 | 0.124 | |
433 | 67259.40 | 39946.09 | 27313.26 | 0.406 | 59205.61 | 8053.74 | 0.120 | |
453 | 68468.80 | 39901.81 | 28566.96 | 0.417 | 59280.48 | 9188.29 | 0.134 | |
20 | 373 | 69760.10 | 42256.49 | 27503.62 | 0.394 | 62985.57 | 6774.54 | 0.097 |
393 | 70430.70 | 42282.62 | 28148.04 | 0.400 | 63191.32 | 7239.34 | 0.103 | |
413 | 72651.20 | 42286.11 | 30365.11 | 0.418 | 62507.87 | 10143.35 | 0.140 | |
433 | 72661.00 | 42280.62 | 30380.37 | 0.418 | 62901.47 | 9759.52 | 0.134 | |
453 | 73191.70 | 42273.55 | 30918.19 | 0.422 | 62904.99 | 10286.75 | 0.141 |
掺量/% | 不同温度条件下FFV的变化 | ||||
---|---|---|---|---|---|
373 K | 393 K | 413 K | 433 K | 453 K | |
5 | 0.001 | 0.011 | -0.011 | 0.010 | 0.002 |
10 | 0.001 | 0.006 | 0.000 | 0.006 | 0.000 |
15 | 0.001 | -0.002 | -0.012 | 0.014 | 0.000 |
20 | 0.002 | 0.004 | -0.028 | 0.000 | -0.007 |
Table 9 Variations of FFV in bio-asphalt model
掺量/% | 不同温度条件下FFV的变化 | ||||
---|---|---|---|---|---|
373 K | 393 K | 413 K | 433 K | 453 K | |
5 | 0.001 | 0.011 | -0.011 | 0.010 | 0.002 |
10 | 0.001 | 0.006 | 0.000 | 0.006 | 0.000 |
15 | 0.001 | -0.002 | -0.012 | 0.014 | 0.000 |
20 | 0.002 | 0.004 | -0.028 | 0.000 | -0.007 |
1 | Lv S T, Liu J, Peng X H, et al. Laboratory experiments of various bio-asphalt on rheological and microscopic properties[J]. Journal of Cleaner Production, 2021, 320: 128770. |
2 | 徐宁, 汪海年, 陈玉, 等. 基于分子动力学的生物沥青相容性研究[J]. 华南理工大学学报(自然科学版), 2022, 50(5): 65-72. |
Xu N, Wang H N, Chen Y, et al. Research on the compatibility of bio-asphalt based on molecular dynamics[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(5): 65-72. | |
3 | Sun Z J, Yi J Y, Huang Y D, et al. Properties of asphalt binder modified by bio-oil derived from waste cooking oil[J]. Construction and Building Materials, 2016, 102: 496-504. |
4 | Gao J F, Wang H N, You Z P, et al. Rheological behavior and sensitivity of wood-derived bio-oil modified asphalt binders[J]. Applied Sciences, 2018, 8(6): 919. |
5 | Meng Y Y, Zhan L, Hu C C, et al. Research on modification mechanism and performance of an innovative bio-based polyurethane modified asphalt: a sustainable way to reducing dependence on petroleum asphalt[J]. Construction and Building Materials, 2022, 350: 128830. |
6 | Dong Z J, Zhou T, Luan H, et al. Composite modification mechanism of blended bio-asphalt combining styrene-butadiene-styrene with crumb rubber: a sustainable and environmental-friendly solution for wastes[J]. Journal of Cleaner Production, 2019, 214: 593-605. |
7 | Yao X G, Li C X, Xu T. Multi-scale studies on interfacial system compatibility between asphalt and SBS modifier using molecular dynamics simulations and experimental methods[J]. Construction and Building Materials, 2022, 346: 128502. |
8 | Tang J, Wang H, Liang M. Molecular simulation and experimental analysis of interaction and compatibility between asphalt binder and styrene-butadiene-styrene[J]. Construction and Building Materials, 2022, 342: 128028. |
9 | Gao M X, Chen Y L, Fan C H, et al. Molecular dynamics study on the compatibility of asphalt and rubber powder with different component contents[J]. ACS Omega, 2022, 7(41): 36157-36164. |
10 | 丛玉凤, 廖克俭, 翟玉春.分子模拟在SBS改性沥青中的应用[J]. 化工学报, 2005, 56(5): 769-773. |
Cong Y F, Liao K J, Zhai Y C. Application of molecular simulation for study of SBS modified asphalt[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(5): 769-773. | |
11 | Huang T, Zhang Z P, Wang L, et al. Study on the compatibility between polyurethane and asphalt based on experiment and molecular dynamics simulation[J]. Case Studies in Construction Materials, 2022, 17: e01424. |
12 | Feng L, Zhao P, Chen T D, et al. Comparative study of octavinyl oligomeric sesquisiloxane nanomaterial-modified asphalt using molecular dynamics method[J]. Polymers, 2022, 14(21): 4577. |
13 | Feng L, Zhao P, Chen T D, et al. Study on the influence of nano-OvPOSS on the compatibility, molecular structure, and properties of SBS modified asphalt by molecular dynamics simulation[J]. Polymers, 2022, 14(19): 4121. |
14 | 丁鹤洋, 汪海年, 徐宁, 等. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 248-255. |
Ding H Y, Wang H N, Xu N, et al. Study on compatibility of biomass oil modified asphalt binder based on molecular dynamics[J]. Materials Reports, 2023, 37(2): 248-255. | |
15 | 屈鑫, 丁鹤洋, 王超, 等. 基于分子动力学模拟技术的生物质油改性沥青微观性能研究[J].材料导报, 2022, 36(19): 124-129. |
Qu X, Ding H Y, Wang C, et al. Study on micro-properties of biomass oil modified asphalt based on molecular dynamics simulation technology[J]. Materials Reports, 2022, 36(19): 124-129. | |
16 | Hildebrand J H. Dipole attraction and hydrogen bond formation in their relation to solubility[J]. Science, 1936, 83(2141): 21-24. |
17 | Faasen D P, Jarray A, Zandvliet H J W, et al. Hansen solubility parameters obtained via molecular dynamics simulations as a route to predict siloxane surfactant adsorption[J]. Journal of Colloid and Interface Science, 2020, 575: 326-336. |
18 | Lu P Z, Ma Y H, Ye K, et al. Analysis of high-temperature performance of polymer-modified asphalts through molecular dynamics simulations and experiments[J]. Construction and Building Materials, 2022, 350: 128903. |
19 | Li D D, Greenfield M L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115: 347-356. |
20 | Ding H Y, Wang H N, Qu X, et al. Towards an understanding of diffusion mechanism of bio-rejuvenators in aged asphalt binder through molecular dynamics simulation[J]. Journal of Cleaner Production, 2021, 299: 126927. |
21 | Khabaz F, Khare R. Molecular simulations of asphalt rheology: application of time-temperature superposition principle[J]. Journal of Rheology, 2018, 62(4): 941-954. |
22 | Zhou T, Kabir S F, Cao L P, et al. Effects of ultraviolet exposure on physicochemical and mechanical properties of bio-modified rubberized bitumen: sustainability promotion and resource conservation[J]. Resources, Conservation and Recycling, 2021, 171: 105626. |
23 | Dong Z J, Zhou T, Luan H, et al. Performance evaluation of bio-based asphalt and asphalt mixture and effects of physical and chemical modification[J]. Road Materials and Pavement Design, 2020, 21(6): 1470-1489. |
24 | Zheng X W, Xu W Y, Xu H P, et al. Research on the ability of bio-rejuvenators to disaggregate oxidized asphaltene nanoclusters in aged asphalt[J]. ACS Omega, 2022, 7(25): 21736-21749. |
25 | Chen W X, Chen S, Zheng C F. Analysis of micromechanical properties of algae bio-based bio-asphalt-mineral interface based on molecular simulation technology[J]. Construction and Building Materials, 2021, 306: 124888. |
26 | Gao J F, Wang H N, You Z P, et al. Research on properties of bio-asphalt binders based on time and frequency sweep test[J]. Construction and Building Materials, 2018, 160: 786-793. |
27 | Jiao B Z, Pan B F, Che T K. Evaluating impacts of desulfurization and depolymerization on thermodynamics properties of crumb rubber modified asphalt through molecular dynamics simulation[J]. Construction and Building Materials, 2022, 323: 126360. |
28 | Zhu X Y, Du Z, Ling H W, et al. Effect of filler on thermodynamic and mechanical behaviour of asphalt mastic: a MD simulation study[J]. International Journal of Pavement Engineering, 2020, 21(10): 1248-1262. |
29 | 张家康. 基于流变学与分子动力学方法的复合改性沥青的相互作用行为与触变性研究[D]. 成都: 西南交通大学, 2021. |
Zhang J K. Study on interaction behavior and thixotropy of composite modified asphalt based on rheology and molecular dynamics methods[D]. Chengdu: Southwest Jiaotong University, 2021. | |
30 | Li C X, Fan S Y, Xu T. Method for evaluating compatibility between SBS modifier and asphalt matrix using molecular dynamics models[J]. Journal of Materials in Civil Engineering, 2021, 33(8): 04021207. |
31 | Ding Y J, Tang B M, Zhang Y Z, et al. Molecular dynamics simulation to investigate the influence of SBS on molecular agglomeration behavior of asphalt[J]. Journal of Materials in Civil Engineering, 2015, 27(8): C4014004. |
32 | Guo F C, Zhang J P, Pei J Z, et al. Investigating the interaction behavior between asphalt binder and rubber in rubber asphalt by molecular dynamics simulation[J]. Construction and Building Materials, 2020, 252: 118956. |
33 | 丁勇杰. 基于分子模拟技术的沥青化学结构特征研究[D]. 重庆: 重庆交通大学, 2013. |
Ding Y J. Study on chemical structure characteristics of asphalt based on molecular simulation technology[D]. Chongqing: Chongqing Jiaotong University, 2013. | |
34 | 林智. 再生沥青微观性能及其与矿料界面交互行为研究[D]. 长春: 吉林大学, 2023. |
Lin Z. Study on microscopic properties of recycled asphalt and its interface interaction with mineral aggregate interface[D]. Changchun: Jilin University, 2023. | |
35 | Li G N, Tan Y Q, Fu Y K, et al. Density, zero shear viscosity and microstructure analysis of asphalt binder using molecular dynamics simulation[J]. Construction and Building Materials, 2022, 345: 128332. |
36 | Li L, Xin C, Guan M Y, et al. Using molecular dynamics simulation to analyze the feasibility of using waste cooking oil as an alternative rejuvenator for aged asphalt[J]. Sustainability, 2021, 13(8): 4373. |
37 | Liu J Z, Yu B, Hong Q Z. Molecular dynamics simulation of distribution and adhesion of asphalt components on steel slag[J]. Construction and Building Materials, 2020, 255: 119332. |
38 | He L, Li G N, Lv S T, et al. Self-healing behavior of asphalt system based on molecular dynamics simulation[J]. Construction and Building Materials, 2020, 254: 119225. |
39 | Sun B, Zhou X X. Diffusion and rheological properties of asphalt modified by bio-oil regenerant derived from waste wood[J]. Journal of Materials in Civil Engineering, 2018, 30(2): 04017274. |
40 | Sun W, Wang H. Molecular dynamics simulation of diffusion coefficients between different types of rejuvenator and aged asphalt binder[J]. International Journal of Pavement Engineering, 2020, 21(8): 966-976. |
41 | 徐珊, 王晶博, 陆阿定, 等. 蓝藻和松木热解液化制取生物油的试验研究[J]. 可再生能源, 2014, 32(9): 1371-1378. |
Xu S, Wang J B, Lu A D, et al. Experimental research on preparation of bio-oil by cyanobacteria and pine pyrolysis liquefaction[J]. Renewable Energy Resources, 2014, 32(9): 1371-1378. | |
42 | Zheng W H, Wang H N, You Z P, et al. Mechanism and rheological characterization of MDI modified wood-based bio-oil asphalt[J]. Construction and Building Materials, 2021, 309: 125113. |
43 | 曾梦澜, 田伟, 朱艳贵, 等. 蓖麻油生物沥青调和沥青混合料使用性能研究[J]. 湖南大学学报(自然科学版), 2017, 44(11): 177-182. |
Zeng M L, Tian W, Zhu Y G, et al. Study on performance of castor oil-based bioasphalt blended asphalt mixture[J]. Journal of Hunan University (Natural Sciences), 2017, 44(11): 177-182. | |
44 | Lu P Z, Huang S M, Shen Y, et al. Mechanical performance analysis of polyurethane-modified asphalt using molecular dynamics method[J]. Polymer Engineering & Science, 2021, 61(9): 2323-2338. |
45 | 曹雪娟, 苏玥, 邓梅. 基于分子动力学模拟的聚合物改性剂与沥青相互作用研究[J]. 化工新型材料, 2021, 49(9): 234-239. |
Cao X J, Su Y, Deng M. Investigation on interaction between polymer modifier and asphalt based on molecular dynamics simulation[J]. New Chemical Materials, 2021, 49(9): 234-239. |
[1] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[2] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[3] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[4] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[5] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[6] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[7] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[8] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[9] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[10] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[11] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[12] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[13] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[14] | Xiaoyu YAO, Jun SHEN, Jian LI, Zhenxing LI, Huifang KANG, Bo TANG, Xueqiang DONG, Maoqiong GONG. Research progress in measurement methods in vapor-liquid critical properties of mixtures [J]. CIESC Journal, 2023, 74(5): 1847-1861. |
[15] | Ke CHEN, Li DU, Ying ZENG, Siying REN, Xudong YU. Phase equilibria and calculation of quaternary system LiCl+MgCl2+CaCl2+H2O at 323.2 K [J]. CIESC Journal, 2023, 74(5): 1896-1903. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||