CIESC Journal ›› 2023, Vol. 74 ›› Issue (11): 4622-4633.DOI: 10.11949/0438-1157.20230893
• Process system engineering • Previous Articles Next Articles
Xiangyu LI1(), Lin SUI1, Junxia MA1,2, Weili XIONG1,2()
Received:
2023-08-29
Revised:
2023-11-14
Online:
2024-01-22
Published:
2023-11-25
Contact:
Weili XIONG
通讯作者:
熊伟丽
作者简介:
李祥宇(1998—),男,硕士研究生,lixiangyu915@163.com
基金资助:
CLC Number:
Xiangyu LI, Lin SUI, Junxia MA, Weili XIONG. ONLSTM soft sensor modeling based on time series transfer and dual stream weighting[J]. CIESC Journal, 2023, 74(11): 4622-4633.
李祥宇, 隋璘, 马君霞, 熊伟丽. 基于时序迁移与双流加权的ONLSTM软测量建模[J]. 化工学报, 2023, 74(11): 4622-4633.
Add to citation manager EndNote|Ris|BibTeX
变量 | 变量描述 |
---|---|
u1 | GAS气流 |
u2 | AIR空气流 |
u3 | AIR二次空气流 |
u4 | SWS区域GAS气流 |
u5 | SWS区域AIR空气流 |
y1 | SO2浓度 |
Table 1 SRU process sampling variables
变量 | 变量描述 |
---|---|
u1 | GAS气流 |
u2 | AIR空气流 |
u3 | AIR二次空气流 |
u4 | SWS区域GAS气流 |
u5 | SWS区域AIR空气流 |
y1 | SO2浓度 |
算法模型 | MSE/10-4 | MAE | R2 |
---|---|---|---|
LSTM | 6.9696 | 0.0257 | 0.9933 |
ONLSTM | 3.4971 | 0.0143 | 0.8925 |
WONLSTM | 2.1054 | 0.0114 | 0.9353 |
DSW-ONLSTM | 1.5775 | 0.0104 | 0.9589 |
TT-WONLSTM | 0.6773 | 0.0072 | 0.9791 |
TT-DSW-ONLSTM | 0.3158 | 0.0042 | 0.9919 |
Table 2 Prediction results of SO2 concentration by various network models
算法模型 | MSE/10-4 | MAE | R2 |
---|---|---|---|
LSTM | 6.9696 | 0.0257 | 0.9933 |
ONLSTM | 3.4971 | 0.0143 | 0.8925 |
WONLSTM | 2.1054 | 0.0114 | 0.9353 |
DSW-ONLSTM | 1.5775 | 0.0104 | 0.9589 |
TT-WONLSTM | 0.6773 | 0.0072 | 0.9791 |
TT-DSW-ONLSTM | 0.3158 | 0.0042 | 0.9919 |
算法模型 | MSE | MAE | R2 |
---|---|---|---|
LSTM | 7.7574 | 2.2530 | 0.6961 |
ONLSTM | 5.8056 | 1.9712 | 0.7630 |
WONLSTM | 4.4563 | 1.5972 | 0.8254 |
DSW-ONLSTM | 3.9376 | 1.5350 | 0.8457 |
TT-WONLSTM | 3.5981 | 1.4902 | 0.8651 |
TT-DSW-ONLSTM | 3.1725 | 1.5196 | 0.8757 |
Table 3 Prediction results of SO2 concentration by various network models in flue gas desulfurization process
算法模型 | MSE | MAE | R2 |
---|---|---|---|
LSTM | 7.7574 | 2.2530 | 0.6961 |
ONLSTM | 5.8056 | 1.9712 | 0.7630 |
WONLSTM | 4.4563 | 1.5972 | 0.8254 |
DSW-ONLSTM | 3.9376 | 1.5350 | 0.8457 |
TT-WONLSTM | 3.5981 | 1.4902 | 0.8651 |
TT-DSW-ONLSTM | 3.1725 | 1.5196 | 0.8757 |
1 | 周乐, 沈程凯, 吴超, 等. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165. |
Zhou L, Shen C K, Wu C, et al. Deep fusion feature extraction network and its application in chemical process soft sensing[J]. CIESC Journal, 2022, 73(7): 3156-3165. | |
2 | Yuan X F, Li L, Wang Y L. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3168-3176. |
3 | Ren J Y, Chen X, Zhao C H. Spatio-temporal view GAIN for data imputation and dynamic soft sensor[C]//2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS). New York: IEEE, 2022: 1446-1451. |
4 | 杜宇浩, 阎高伟, 李荣, 等. 基于局部线性嵌入的测地线流式核多工况软测量建模方法[J]. 化工学报, 2020, 71(3): 1278-1287. |
Du Y H, Yan G W, Li R, et al. Multiple working conditions soft sensor modeling method of geodesic flow kernel based on locally linear embedding[J]. CIESC Journal, 2020, 71(3): 1278-1287. | |
5 | 潘贝, 金怀平, 杨彪, 等. 基于多样性加权相似度的集成局部加权偏最小二乘软测量建模[J]. 信息与控制, 2019, 48(2): 217-223, 231. |
Pan B, Jin H P, Yang B, et al. Soft sensor development based on ensemble locally weighted partial least squares using diverse weighted similarity measures[J]. Information and Control, 2019, 48(2): 217-223, 231. | |
6 | Liu J L, Wang Y K, Zhang Y. A novel isomap-SVR soft sensor model and its application in rotary kiln calcination zone temperature prediction[J]. Symmetry, 2020, 12(1): 167. |
7 | Shi X D, Kang Q, Zhou M C, et al. Soft sensing of nonlinear and multimode processes based on semi-supervised weighted Gaussian regression[J]. IEEE Sensors Journal, 2020, 20(21): 12950-12960. |
8 | Shang C, Yang F, Huang D X, et al. Data-driven soft sensor development based on deep learning technique[J]. Journal of Process Control, 2014, 24(3): 223-233. |
9 | Yao L, Ge Z Q. Deep learning of semisupervised process data with hierarchical extreme learning machine and soft sensor application[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1490-1498. |
10 | Sui L, Sun K, Ma J X, et al. Input variable selection and structure optimization for LSTM-based soft sensor with a dual nonnegative garrote approach[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-11. |
11 | Wang K C, Shang C, Liu L, et al. Dynamic soft sensor development based on convolutional neural networks[J]. Industrial & Engineering Chemistry Research, 2019, 58(26): 11521-11531. |
12 | Wang Y L, Pan Z F, Yuan X F, et al. A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network[J]. ISA Transactions, 2020, 96: 457-467. |
13 | Guo R Y, Liu H. A hybrid mechanism- and data-driven soft sensor based on the generative adversarial network and gated recurrent unit[J]. IEEE Sensors Journal, 2021, 21(22): 25901-25911. |
14 | 邵伟明, 葛志强, 李浩, 等. 基于循环神经网络的半监督动态软测量建模方法[J]. 电子测量与仪器学报, 2019, 33(11): 7-13. |
Shao W M, Ge Z Q, Li H, et al. Semisupervised dynamic soft sensing approaches based on recurrent neural network[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(11): 7-13. | |
15 | Lippi M, Montemurro M A, Degli Esposti M, et al. Natural language statistical features of LSTM-generated texts[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3326-3337. |
16 | Zhi Z, Liu L S, Liu D T, et al. Fault detection of the harmonic reducer based on CNN-LSTM with a novel denoising algorithm[J]. IEEE Sensors Journal, 2022, 22(3): 2572-2581. |
17 | Lui C F, Liu Y Q, Xie M. A supervised bidirectional long short-term memory network for data-driven dynamic soft sensor modeling[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-13. |
18 | Ren L, Wang T, Laili Y J, et al. A data-driven self-supervised LSTM-DeepFM model for industrial soft sensor[J]. IEEE Transactions on Industrial Informatics, 2021, 18(9): 5859-5869. |
19 | Xie R M, Hao K R, Huang B, et al. Data-driven modeling based on two-stream λ gated recurrent unit network with soft sensor application[J]. IEEE Transactions on Industrial Electronics, 2020, 67(8): 7034-7043. |
20 | Shen Y K, Tan S, Sordoni A, et al. Ordered neurons: integrating tree structures into recurrent neural networks[EB/OL]. 2018. . |
21 | Zhang Q, Chai B, Song B C, et al. A hierarchical fine-tuning based approach for multi-label text classification[C]//2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). Chengdu, China: IEEE, 2020: 51-54. |
22 | Dai S Z, Li Z H, Li L, et al. Investigating the dynamic memory effect of human drivers via ON-LSTM[J]. Science China Information Sciences, 2020, 63(9): 1-11. |
23 | Shi F, Cao H R, Wang Y K, et al. Chatter detection in high-speed milling processes based on ON-LSTM and PBT[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(11): 3361-3378. |
24 | Shi X D, Xu J, Bao H Q, et al. Domain adaptation soft sensing with parameter transferring[C]//2022 IEEE International Conference on Networking, Sensing and Control (ICNSC).New York: IEEE, 2023: 1-5. |
25 | Zhang X R, Song C Y, Zhao J, et al. Domain adaptation mixture of Gaussian processes for online soft sensor modeling of multimode processes when sensor degradation occurs[J]. IEEE Transactions on Industrial Informatics, 2022, 18(7): 4654-4664. |
26 | Chai Z, Zhao C H, Huang B, et al. A deep probabilistic transfer learning framework for soft sensor modeling with missing data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12): 7598-7609. |
27 | Du Y T, Wang J D, Feng W J, et al. AdaRNN: adaptive learning and forecasting of time series[EB/OL]. 2021. . |
28 | Schäfer P. Scalable time series classification[J]. Data Mining and Knowledge Discovery, 2016, 30(5): 1273-1298. |
29 | Luo Y, Wang Y L. A statistical time-frequency model for non-stationary time series analysis[J]. IEEE Transactions on Signal Processing, 2020, 68: 4757-4772. |
30 | di Bella A, Fortuna L, Graziani S, et al. Soft sensor design for a sulfur recovery unit using genetic algorithms[C]//2007 IEEE International Symposium on Intelligent Signal Processing. New York: IEEE, 2008: 1-6. |
31 | Sun K, Wu X L, Xue J Y, et al. Development of a new multi-layer perceptron based soft sensor for SO2 emissions in power plant[J]. Journal of Process Control, 2019, 84: 182-191. |
[1] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[2] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[3] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[4] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[5] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[6] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[7] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[8] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[9] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[10] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[11] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[12] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[13] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
[14] | Taoyan ZHAO, Jiangtao CAO, Ping LI, Lin FENG, Yu SHANG. Application of interval type-2 fuzzy immune PID controller to temperature control system for uncatalysed oxidation of cyclohexane [J]. CIESC Journal, 2022, 73(7): 3166-3173. |
[15] | Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing [J]. CIESC Journal, 2022, 73(7): 3156-3165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||