CIESC Journal ›› 2024, Vol. 75 ›› Issue (2): 659-674.DOI: 10.11949/0438-1157.20230681
• Energy and environmental engineering • Previous Articles Next Articles
Xueyun WANG1,2(), Xiaobing YU3(), Wanwang PENG1,2, Yansong SHEN3()
Received:
2023-07-04
Revised:
2024-01-15
Online:
2024-04-10
Published:
2024-02-25
Contact:
Xiaobing YU, Yansong SHEN
王学云1,2(), 郁肖兵3(), 彭万旺1,2, 沈岩松3()
通讯作者:
郁肖兵,沈岩松
作者简介:
王学云(1990—),男,硕士,wangxueyun@bricc.cn
基金资助:
CLC Number:
Xueyun WANG, Xiaobing YU, Wanwang PENG, Yansong SHEN. Numerical study on combustion zone behaviors of a slagging gasifier[J]. CIESC Journal, 2024, 75(2): 659-674.
王学云, 郁肖兵, 彭万旺, 沈岩松. 熔渣气化炉喷嘴燃烧区行为的数值模拟研究[J]. 化工学报, 2024, 75(2): 659-674.
Add to citation manager EndNote|Ris|BibTeX
熔渣气化炉参数 | 数值 |
---|---|
熔渣气化炉炉膛内径/ mm | 3600 |
熔渣气化炉炉膛高度 (不计 渣池)/mm | 10500 |
熔渣气化炉气化剂喷嘴个数/个 | 6 |
熔渣气化炉气化剂喷嘴出口(喷口)内径/mm | 18 |
熔渣气化炉气化剂喷嘴轴线与水平线夹角/(°) | 19 |
熔渣气化炉气化剂喷嘴轴线 延长线交点距渣池上表面 距离/mm | 130 |
熔渣气化炉气化剂喷嘴水平 伸入长度/mm | 215 |
氧气质量流量所有喷嘴总计/(kg/h) | 13718 |
水蒸气质量流量所有喷嘴总计/(kg/h) | 12621 |
气化剂给气温度/K | 513 |
气化剂给气压强/MPa | 4.6 |
熔渣气化炉运行压强/MPa | 4.0 |
熔渣气化炉炉顶煤气压强/MPa | 4.0 |
熔渣气化炉给煤速率/(kg/h) | 30000 |
熔渣气化炉给煤粒度/mm | 6~50 |
熔渣气化炉给煤密度/(kg/m3) | 1400 |
熔渣气化炉给煤成分 (质量分数) | 全水(9.4%);灰分ash(8.3%);挥发分(35.44%);固定碳(55%);内水(1.26%);低位热值(6333 kcal/kg) |
熔渣气化炉壁面冷却条件 | 冷却水流量6 m3/h(标准工况),温差6℃,壁面温度350~500℃ |
Table 1 The data used in the MEKL combustion zone model
熔渣气化炉参数 | 数值 |
---|---|
熔渣气化炉炉膛内径/ mm | 3600 |
熔渣气化炉炉膛高度 (不计 渣池)/mm | 10500 |
熔渣气化炉气化剂喷嘴个数/个 | 6 |
熔渣气化炉气化剂喷嘴出口(喷口)内径/mm | 18 |
熔渣气化炉气化剂喷嘴轴线与水平线夹角/(°) | 19 |
熔渣气化炉气化剂喷嘴轴线 延长线交点距渣池上表面 距离/mm | 130 |
熔渣气化炉气化剂喷嘴水平 伸入长度/mm | 215 |
氧气质量流量所有喷嘴总计/(kg/h) | 13718 |
水蒸气质量流量所有喷嘴总计/(kg/h) | 12621 |
气化剂给气温度/K | 513 |
气化剂给气压强/MPa | 4.6 |
熔渣气化炉运行压强/MPa | 4.0 |
熔渣气化炉炉顶煤气压强/MPa | 4.0 |
熔渣气化炉给煤速率/(kg/h) | 30000 |
熔渣气化炉给煤粒度/mm | 6~50 |
熔渣气化炉给煤密度/(kg/m3) | 1400 |
熔渣气化炉给煤成分 (质量分数) | 全水(9.4%);灰分ash(8.3%);挥发分(35.44%);固定碳(55%);内水(1.26%);低位热值(6333 kcal/kg) |
熔渣气化炉壁面冷却条件 | 冷却水流量6 m3/h(标准工况),温差6℃,壁面温度350~500℃ |
项目 | 参数 |
---|---|
主相 | 相材料名称:混合物气体 混合物组成:氧气,二氧化碳,水蒸气,氮气,一氧化碳,氢气 反应模型:涡耗散 (eddy-dissipation) 气体状态:理想气体方程 热容模型:混合律(mixing-law) 热导率:混合律(mass-weighted-mixing-law) 黏度:1.72×10-5 kg/(m·s) 质量扩散系数:2.88×10-5 m2/s |
次相(颗粒相) | 相名称:碳 密度:用户自定义密度模型UDF 粒度:用户自定义粒度模型UDF 颗粒动力黏度 (kinetic viscosity):Gidaspow 颗粒黏度 (bulk viscosity):Lun 摩擦黏度 (frictional visosity):schaeffer 内摩擦角:30.00007 摩擦压力:based-ktgf 摩擦模量:derived 摩擦填充极限:0.62 颗粒相温度模型:phase property 颗粒相温度求解:algebraic 固相压力:Lun 径向分布:Lun 弹性模量:derived 填充极限:0.63 |
边界条件设置 | 气化剂入口:UDF 炉顶气体出口:UDF 渣池上液面: UDF |
其他计算参数 | 时间步长:10-4 s 计算总时长:10 s |
Table 2 MEKL combustion zone model settings
项目 | 参数 |
---|---|
主相 | 相材料名称:混合物气体 混合物组成:氧气,二氧化碳,水蒸气,氮气,一氧化碳,氢气 反应模型:涡耗散 (eddy-dissipation) 气体状态:理想气体方程 热容模型:混合律(mixing-law) 热导率:混合律(mass-weighted-mixing-law) 黏度:1.72×10-5 kg/(m·s) 质量扩散系数:2.88×10-5 m2/s |
次相(颗粒相) | 相名称:碳 密度:用户自定义密度模型UDF 粒度:用户自定义粒度模型UDF 颗粒动力黏度 (kinetic viscosity):Gidaspow 颗粒黏度 (bulk viscosity):Lun 摩擦黏度 (frictional visosity):schaeffer 内摩擦角:30.00007 摩擦压力:based-ktgf 摩擦模量:derived 摩擦填充极限:0.62 颗粒相温度模型:phase property 颗粒相温度求解:algebraic 固相压力:Lun 径向分布:Lun 弹性模量:derived 填充极限:0.63 |
边界条件设置 | 气化剂入口:UDF 炉顶气体出口:UDF 渣池上液面: UDF |
其他计算参数 | 时间步长:10-4 s 计算总时长:10 s |
方程 | 公式 |
---|---|
连续性方程 | |
动量方程 | |
能量方程 | |
组分传输方程 | |
气体状态方程 | |
湍流模型 | |
气固动量交换方程 | |
固相黏度方程 | |
气固换热方程 | |
颗粒相温度方程 |
Table 3 Governing equations of the MEKL combustion zone model
方程 | 公式 |
---|---|
连续性方程 | |
动量方程 | |
能量方程 | |
组分传输方程 | |
气体状态方程 | |
湍流模型 | |
气固动量交换方程 | |
固相黏度方程 | |
气固换热方程 | |
颗粒相温度方程 |
反应类型 | 化学反应方程 | 化学反应速率 |
---|---|---|
碳燃烧[ | C + O2 | 指前因子:1.04×105 温度指数β:1.0 活化能:9.31×107 |
碳气化[ | C + CO2 | 指前因子:2224 温度指数β:0.0 活化能:2.199×108 |
水煤气反应[ | C + H2O | 指前因子:63.3 温度指数β:0.0 活化能:1.168×107 |
Table 4 Chemical reactions and kinetics of the MEKL combustion zone model
反应类型 | 化学反应方程 | 化学反应速率 |
---|---|---|
碳燃烧[ | C + O2 | 指前因子:1.04×105 温度指数β:1.0 活化能:9.31×107 |
碳气化[ | C + CO2 | 指前因子:2224 温度指数β:0.0 活化能:2.199×108 |
水煤气反应[ | C + H2O | 指前因子:63.3 温度指数β:0.0 活化能:1.168×107 |
项目 | 参数 |
---|---|
基准算例 | 气化剂质量流量: 氧气137180 kg/h; 水蒸气12621 kg/h 气化剂入口温度:513 K |
气化剂流量的影响 | 基准算例气化剂流量的0.5, 1.0, 1.5, 2.0倍 |
Table 5 Case settings of the MEKL combustion zone model
项目 | 参数 |
---|---|
基准算例 | 气化剂质量流量: 氧气137180 kg/h; 水蒸气12621 kg/h 气化剂入口温度:513 K |
气化剂流量的影响 | 基准算例气化剂流量的0.5, 1.0, 1.5, 2.0倍 |
模型参数设置 | 具体设置 |
---|---|
模型基础框架 | 欧拉-欧拉多相流模型 |
模型主相 | 气相 |
模型次相 | 颗粒相 |
气相性质 | 密度:1.225 kg/m3, 黏度:1.789×10-5 kg/(m·s) |
曳力模型 | Huilin-Gidspow |
操作条件 | 压强:101325 Pa, 温度:298 K |
算例1 | 气相入口速度:65 m/s 气相入口直径:0.001 m 颗粒填充高度:0.20 m |
算例2 | 气相入口速度:85 m/s 气相入口直径:0.002 m 颗粒填充高度:0.30 m |
算例3 | 气相入口速度:112 m/s 气相入口直径:0.003 m 颗粒填充高度:0.25 m |
Table 6 Parameters and settings used in the model validation
模型参数设置 | 具体设置 |
---|---|
模型基础框架 | 欧拉-欧拉多相流模型 |
模型主相 | 气相 |
模型次相 | 颗粒相 |
气相性质 | 密度:1.225 kg/m3, 黏度:1.789×10-5 kg/(m·s) |
曳力模型 | Huilin-Gidspow |
操作条件 | 压强:101325 Pa, 温度:298 K |
算例1 | 气相入口速度:65 m/s 气相入口直径:0.001 m 颗粒填充高度:0.20 m |
算例2 | 气相入口速度:85 m/s 气相入口直径:0.002 m 颗粒填充高度:0.30 m |
算例3 | 气相入口速度:112 m/s 气相入口直径:0.003 m 颗粒填充高度:0.25 m |
1 | Smith P V. KBR transport gasifier[EB/OL]. 2005[2023-10-03]. . |
2 | Arthur C J, Munir M T, Young B R, et al. Process simulation of the transport gasifier[J]. Fuel, 2014, 115: 479-489. |
3 | Doering E L, Cremer G A. Advances in the shell coal gasification process[C]//Lon H K. American Chemical Society National Meeting. Anaheim, California, United States: American Chemical Society, 1995: 40. |
4 | Fischer-Tropsch.org. Lurgi gasification[EB/OL]. 1982[2023-10-03]. . |
5 | Olschar M, Schulze O J L. The BGL commercial plants and pilot testing[EB/OL]. 2012[2023-10-03]. . |
6 | Matamba T, Iglauer S, Keshavarz A. A progress insight of the formation of hydrogen rich syngas from coal gasification[J]. Journal of the Energy Institute, 2022, 105: 81-102. |
7 | Kumar A, Daw P, Milstein D. Homogeneous catalysis for sustainable energy: hydrogen and methanol economies, fuels from biomass, and related topics[J]. Chemical Reviews, 2022, 122(1): 385-441. |
8 | Midilli A, Kucuk H, Topal M E, et al. A comprehensive review on hydrogen production from coal gasification: challenges and opportunities[J]. International Journal of Hydrogen Energy, 2021, 46(50): 25385-25412. |
9 | Megía P J, Vizcaino A J, Calles J A, et al. Hydrogen production technologies: from fossil fuels toward renewable sources. A mini review[J]. Energy & Fuels, 2021, 35(20): 16403-16415. |
10 | Tavares R, Monteiro E, Tabet F, et al. Numerical investigation of optimum operating conditions for syngas and hydrogen production from biomass gasification using Aspen Plus[J]. Renewable Energy, 2020, 146: 1309-1314. |
11 | Nikrityuk P A, Meyer B. Gasification Processes: Modeling and Simulation[M]. Singapore: John Wiley & Sons Inc., 2014: 17-22. |
12 | Speight J G. Handbook of Coal Analysis[M]. New Jersey: John Wiley & Sons, Inc., 2015: 43-47. |
13 | Yoon H, Wei J, Denn M M. A model for moving-bed coal gasification reactors[J]. AIChE Journal, 1978, 24(5): 885-903. |
14 | Kulkarni M, Ganguli R. Moving bed gasification of low rank Alaska coal[J]. Journal of Combustion, 2012, 2012: 1-8. |
15 | Zhang Z W, Zhao Z H, Wu F, et al. Reaction behaviors of a single coal char particle affected by oxygen and steam under oxy-fuel combustion[J]. Fuel, 2021, 291: 120229. |
16 | 邹震江. 固定床熔渣气化高速射流区气固运动行为研究[D]. 北京: 煤炭科学研究总院研究生院, 2017. |
Zhou Z J. Experiment research on the character of tuyere raceway of fix-bed slagging gasifier[D]. Beijing: Graduate School of China Coal Research Institute, 2017. | |
17 | Wang X X, Zhou B M, Xu S S, et al. Numerical analysis of coal size influencing the performance and slag flow characteristics of gasifier based on a comprehensive model[J]. Fuel, 2023, 332: 125934. |
18 | Lin K, Shen Z J, Liang Q F, et al. The study of slag discharge behavior of entrained-flow gasifier based on the viscosity-temperature characteristics of different types of coals[J]. Fuel, 2021, 292: 120314. |
19 | Wang L J, Du X C, Sun J J, et al. Numerical simulation on the coal gasification process in dry feed entrained gasifier[C]//2020 7th International Conference on Information Science and Control Engineering (ICISCE). IEEE, 2020: 924-928. |
20 | Mularski J, Pawlak-Kruczek H, Modlinski N. A review of recent studies of the CFD modelling of coal gasification in entrained flow gasifiers, covering devolatilization, gas-phase reactions, surface reactions, models and kinetics[J]. Fuel, 2020, 271: 117620. |
21 | Ge J, Wang Z H, Wan K D, et al. Slagging behavior modeling in coal gasifiers using two-way coupled slag model with CFD[J]. Fuel, 2020, 281: 118736. |
22 | Alobaid F, Almohammed N, Farid M M, et al. Progress in CFD simulations of fluidized beds for chemical and energy process engineering[J]. Progress in Energy and Combustion Science, 2022, 91: 100930. |
23 | Wang F C, Yu G S, Liu H F, et al. Opposed multi-burner gasification technology: recent process of fundamental research and industrial application[J]. Chinese Journal of Chemical Engineering, 2021, 35: 124-142. |
24 | Ramos A, Monteiro E, Rouboa A. Numerical approaches and comprehensive models for gasification process: a review[J]. Renewable and Sustainable Energy Reviews, 2019, 110: 188-206. |
25 | Hu C S, Luo K, Wang S, et al. Influences of operating parameters on the fluidized bed coal gasification process: a coarse-grained CFD-DEM study[J]. Chemical Engineering Science, 2019, 195: 693-706. |
26 | Xu J, Yu S, Wang N, et al. Characterization of high-turbulence zone in slowly moving bed slagging coal gasifier by a 3D mathematical model[J]. Powder Technology, 2017, 314: 524-531. |
27 | Zhao Z G, Yu X B, Li Y T, et al. CFD study of hydrogen co-injection through tuyere and shaft of an ironmaking blast furnace[J]. Fuel, 2023, 348: 128641. |
28 | Yu X B, Shen Y S. Numerical study of transient thermochemical states inside an ironmaking blast furnace: impacts of blast temperature drop and recovery[J]. Fuel, 2023, 348: 128471. |
29 | Yu X B, Shen Y S. Transient state modeling of industry-scale ironmaking blast furnaces[J]. Chemical Engineering Science, 2022, 248: 117185. |
30 | Zhuo Y T, Hu Z J, Shen Y S. CFD study of hydrogen injection through tuyeres into ironmaking blast furnaces[J]. Fuel, 2021, 302: 120804. |
31 | Wang S, Shen Y S. CFD-DEM modelling of raceway dynamics and coke combustion in an ironmaking blast furnace[J]. Fuel, 2021, 302: 121167. |
32 | Bösenhofer M. On the modeling of multi-phase reactive flows: thermo-chemical conversion in the raceway zone of blast furnaces[D]. Vienna: TU Wien, 2020. |
33 | Armstrong L M, Gu S, Luo K H. Parametric study of gasification processes in a BFB coal gasifier[J]. Industrial & Engineering Chemistry Research, 2011, 50(10): 5959-5974. |
34 | Fang N, Zeng L Y, Zhang B, et al. Numerical simulation of flow and gasification characteristics with different swirl vane angles in a 2000 t/d GSP gasifier[J]. Applied Thermal Engineering, 2019, 153: 791-799. |
35 | Couto N D, Silva V B, Monteiro E, et al. An experimental and numerical study on the Miscanthus gasification by using a pilot scale gasifier[J]. Renewable Energy, 2017, 109: 248-261. |
36 | Safronov D, Richter A, Meyer B. Numerical predictions of the shape and size of the raceway zone in a blast furnace[C]//Olsen J E, Johansen S T. Proceedings of the 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries. Trondheim, Norway: SINTEF Academic Press, 2017: 531-540. |
37 | Nogami H, Yamaoka H, Takatani K. Raceway design for the innovative blast furnace[J]. ISIJ International, 2004, 44(12): 2150-2158. |
[1] | Zhaoxiang ZHANG, Maokun CAI, Zhiying REN, Xiaohong JIA, Fei GUO. Numerical analysis of the effect of temperature and its fluctuations on the vulcanization process of rubber seals [J]. CIESC Journal, 2024, 75(2): 715-726. |
[2] | Dong HAN, Ningning GAO, Xinde TANG, Shenggao GONG, Liangshu XIA. Model development for simulating bubble breakup in gas-liquid bubbly flows with the Eulerian-Lagrangian approach [J]. CIESC Journal, 2024, 75(2): 553-565. |
[3] | Wen WEN, Huiyan WANG, Jinghong ZHOU, Yueqiang CAO, Xinggui ZHOU. Simulation study on the impact of graphite anode particles on lithium-ion battery capacity fading and SEI film growth [J]. CIESC Journal, 2024, 75(1): 366-376. |
[4] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[5] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[6] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[7] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[10] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[11] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[12] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[13] | Shijun LIU, Anqing ZHENG, Xiaoli CHEN, Juan FU, Qiucheng SU. Study on pyrolysis characteristics of cellulose-enhanced epoxy resin composites [J]. CIESC Journal, 2023, 74(12): 4968-4978. |
[14] | Zongpeng LIU, Shaojian HU, Yuning ZHANG, Ling MA, Lei LI, Bencheng WU, Jianhua ZHU. Thermodynamic analysis and kinetics study on synthesis reaction of complex polyolester [J]. CIESC Journal, 2023, 74(11): 4475-4486. |
[15] | Lei ZHANG, Xiaohui SONG, Jianting ZHANG, Meiling TU, Asan YANG. Reaction kinetics study of tranexamic acid isomerization process [J]. CIESC Journal, 2023, 74(10): 4173-4181. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||