CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 1750-1764.DOI: 10.11949/0438-1157.20240091
• Reviews and monographs • Previous Articles Next Articles
Tingting ZHAO1(), Lixiang YAN1, Fuli TANG2, Minzhi XIAO1, Ye TAN1, Liubin SONG1(), Zhongliang XIAO1(), Lingjun LI3
Received:
2024-01-19
Revised:
2024-03-03
Online:
2024-06-25
Published:
2024-05-25
Contact:
Liubin SONG, Zhongliang XIAO
赵亭亭1(), 鄢立祥1, 唐福利2, 肖敏之1, 谭烨1, 宋刘斌1(), 肖忠良1(), 李灵均3
通讯作者:
宋刘斌,肖忠良
作者简介:
赵亭亭(1994—),女,博士,讲师,zhaott_468@163.com
基金资助:
CLC Number:
Tingting ZHAO, Lixiang YAN, Fuli TANG, Minzhi XIAO, Ye TAN, Liubin SONG, Zhongliang XIAO, Lingjun LI. Research progress on design strategies and reaction mechanisms of photo-assisted Li-CO2 battery catalysts[J]. CIESC Journal, 2024, 75(5): 1750-1764.
赵亭亭, 鄢立祥, 唐福利, 肖敏之, 谭烨, 宋刘斌, 肖忠良, 李灵均. 光辅助锂-二氧化碳电池催化剂的设计策略与反应机理研究进展[J]. 化工学报, 2024, 75(5): 1750-1764.
Add to citation manager EndNote|Ris|BibTeX
Fig.4 The working mechanism for the light-induced discharging process (a); Band diagram of the In2S3@CNT/SS (b); Photocurrent response to UV light of ICS, In2S3NS/SS, and CNT (c)[40]
Fig.5 Optimized structures and adsorption energy of intermediate LiCO2 molecules on the TNAs (a); Optimized structures and adsorption energy of intermediate LiCO2 molecules on the TNAs@AgNPs (b); Gibbs free energy of battery surface and solution-mediated reaction pathways (c)[39]
Fig.6 Schematic illustration of different growth mechanisms of Li2CO3 in the Li-CO2 batteries based on TiO2 NAs/CT and RuO2-TiO2 NAs/CT cathodes (a); The optimized structures and the corresponding binding energy of Li2CO3 on TiO2 and RuO2 surfaces (b); The differential charge density Δρ of CO2 or Li2CO3 adsorbed on TiO2 and RuO2 surfaces (c)[38]
Fig.7 Charge curves of Li-CO2 batteries with TiO2/CC cathode with and without illumination (a); LSV curves measured in the CO2ER region of TiO2/CC with and without illumination in 0.5 mol·L-1 CO2-saturated LiTFSI/DME solution at a scan rate of 5 mV·s-1 (b); Corresponding Tafel curves (c); Galvanostatic intermittent titration technique curves obtained from Li-CO2 battery with TiO2/CC cathode with and without illumination (d); Schematic of energy diagrams for the reduced charge voltage of Li-CO2 battery under illumination (e)[36]
光催化剂 | 首次效率/% | 电流密度/(mA·cm-2) | 放电比容量/(mAh·cm-2) | 充电/放电电压平台/V | 循环次数(圈) | 文献 |
---|---|---|---|---|---|---|
TiO2/CC | 97.2 | 0.01 | 0.01 | 2.82/2.88 | 30 | [ |
RuO2/TiO2 | 95.5 | 250 mA·g-1 | 1000 mAh·g-1 | 2.78/2.91 | 238 | [ |
TiO2@Ag | 87.1 | 0.01 | 0.1 | 2.49/2.86 | 100 | [ |
Cu2O/CNT | 85 | 100 mA·g-1 | 100 mAh·g-1 | 2.5/4.5 | 50 | [ |
In2S3@CNT/SS | 98.1 | 0.01 | 0.01 | 3.14/3.2 | 25 | [ |
CNT@C3N4 | 98.8 | 0.02 | 0.02 | 3.24/3.28 | 100 | [ |
SiC/RGO | 84.4 | 20 mA·g-1 | 0.01 | 2.77/3.28 | 20 | [ |
CoPc-Mn-O | 98.5 | 0.02 | — | 3.20/3.25 | 30 | [ |
Au@TiO2 | 92.4 | 0.01 | 0.01 | 2.95/3.49 | 200 | [ |
混合相TiO2 | — | 0.025 | — | 2.2/3.0 | 52 | [ |
Table 1 Structure and performance of photo-assisted Li-CO2 batteries
光催化剂 | 首次效率/% | 电流密度/(mA·cm-2) | 放电比容量/(mAh·cm-2) | 充电/放电电压平台/V | 循环次数(圈) | 文献 |
---|---|---|---|---|---|---|
TiO2/CC | 97.2 | 0.01 | 0.01 | 2.82/2.88 | 30 | [ |
RuO2/TiO2 | 95.5 | 250 mA·g-1 | 1000 mAh·g-1 | 2.78/2.91 | 238 | [ |
TiO2@Ag | 87.1 | 0.01 | 0.1 | 2.49/2.86 | 100 | [ |
Cu2O/CNT | 85 | 100 mA·g-1 | 100 mAh·g-1 | 2.5/4.5 | 50 | [ |
In2S3@CNT/SS | 98.1 | 0.01 | 0.01 | 3.14/3.2 | 25 | [ |
CNT@C3N4 | 98.8 | 0.02 | 0.02 | 3.24/3.28 | 100 | [ |
SiC/RGO | 84.4 | 20 mA·g-1 | 0.01 | 2.77/3.28 | 20 | [ |
CoPc-Mn-O | 98.5 | 0.02 | — | 3.20/3.25 | 30 | [ |
Au@TiO2 | 92.4 | 0.01 | 0.01 | 2.95/3.49 | 200 | [ |
混合相TiO2 | — | 0.025 | — | 2.2/3.0 | 52 | [ |
Fig.8 Schematic depiction of the solar-spectrum photothermal effect of plasmonic semiconductor nanomaterials via plasmon-and exciton-based approaches (a); On/off response of the surface temperature increase of Au@TiO2 and TiO2 (b); Distribution of the surface temperature increase on TiO2 (c) and Au@TiO2 (d) spheres under the illumination conditions; I-T curves of Au@TiO2 and TiO2 spheres (e); Distribution of the electric near field under the illumination conditions on TiO2 and Au@TiO2 spheres surface (f); LSV curves for the CDR process of TiO2 and Au@TiO2 spheres with and without illumination (g)[44]
Fig.9 Schematic diagram of the synergistic effect of SiC flakes and RGO (a); UV-Vis diffuse reflectance spectra of RGO, SiC/RGO and pure SiC (b); The Tauc plot (c); Mott-Schottky plots (d); Room-temperature PL spectra of SiC and SiC/RGO samples (e); LSV curves of SiC/RGO and SiC cathodes under illumination (f)[43]
Fig.10 Working mechanism of the dual-field assisted Li-CO2 battery (a); Discharge/charge voltage profiles at the first cycle (b); Cycling performance (c); Rate capability of Li-CO2 batteries with TNAs and TNAs@AgNPs cathodes in light or dark (d); Discharge/charge curves of the TNAs@AgNPs cathode in light at 1.0 mAh·cm-2 and 2.0 mA·cm-2 (e); Comparison of cycling stability (f) and rate capability (g) of the dual-field assisted Li-CO2 battery with some representative Li-CO2 batteries based on the electrocatalysis and photo electrocatalysis mechanisms[39]
1 | Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451: 652-657. |
2 | Ding X B, Huang Q H, Xiong X H. Research and application of fast-charging graphite anodes for lithium-ion batteries[J]. Chinese Journal of Inorganic Chemistry, 2022, 38(11): 2204057. |
3 | Chen C, Zhang J M, Hu B R, et al. Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode[J]. Nature communications, 2023, 14(1): 4018. |
4 | Chiang Y M. Building a better battery[J]. MRS Bulletin, 2020, 45(3): 246-247. |
5 | Li M, Lu J, Chen Z W, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018: e1800561. |
6 | Ding X B, Huang H Y, Huang Q H, et al. Doping sites modulation of T-Nb2O5 to achieve ultrafast lithium storage[J]. Journal of Energy Chemistry, 2023, 77(2): 280-289. |
7 | Chen K, Yang D Y, Huang G, et al. Lithium-air batteries: air-electrochemistry and anode stabilization[J]. Accounts of Chemical Research, 2021, 54(3): 632-641. |
8 | Ohno S, Zeier W G. Toward practical solid-state lithium-sulfur batteries: challenges and perspectives[J]. Accounts of Materials Research, 2021, 2(10): 869-880. |
9 | Zhang L, Wang S, Wang Q, et al. Dendritic solid polymer electrolytes: a new paradigm for high-performance lithium-based batteries[J]. Advanced Materials, 2023, 35(35): e2303355. |
10 | Ma L, Yu T W, Tzoganakis E, et al. Fundamental understanding and material challenges in rechargeable nonaqueous Li-O2 batteries: recent progress and perspective[J]. Advanced Energy Materials, 2018, 8(22): 1800348. |
11 | Xiao X, Zhang Z J, Yan A J, et al. Upgrading carbon utilization and green energy storage through oxygen-assisted lithium-carbon dioxide batteries[J]. Energy Storage Materials, 2024, 65: 103129. |
12 | Chen L, Zhou J W, Wang Y H, et al. Flexible, stretchable, water-/fire-proof fiber-shaped Li-CO2 batteries with high energy density[J]. Advanced Energy Materials, 2023, 13(1): 2202933. |
13 | Zhao W T, Yang Y, Deng Q H, et al. Toward an understanding of bimetallic MXene solid-solution in binder-free electrocatalyst cathode for advanced Li-CO2 batteries[J]. Advanced Functional Materials, 2022, 33(5): 1. |
14 | Sun X Y, Mu X W, Zheng W, et al. Binuclear Cu complex catalysis enabling Li-CO2 battery with a high discharge voltage above 3.0 V[J]. Nature Communications, 2023, 14: 536. |
15 | Li X L, Zhang J X, Qi G C, et al. Vertically aligned N-doped carbon nanotubes arrays as efficient binder-free catalysts for flexible Li-CO2 batteries[J]. Energy Storage Materials, 2021, 35: 148-156. |
16 | Zhou L J, Wang H, Zhang K, et al. Fast decomposition of Li2CO3/C actuated by single-atom catalysts for Li-CO2 batteries[J]. Science China Materials, 2021, 64(9): 2139-2147. |
17 | Liu B, Sun Y L, Liu L Y, et al. Recent advances in understanding Li-CO2 electrochemistry[J]. Energy & Environmental Science, 2019, 12(3): 887-922. |
18 | Lin J F, Ding J N, Wang H Z, et al. Boosting energy efficiency and stability of Li-CO2 batteries via synergy between Ru atom clusters and single-atom Ru-N4 sites in the electrocatalyst cathode[J]. Advanced Materials, 2022, 34(17): e2200559. |
19 | Xiao Y, Hu S L, Miao Y, et al. Recent progress in hot spot regulated strategies for catalysts applied in Li-CO2 batteries[J]. Small, 2024, 20(1): e2305009. |
20 | Lu B Y, Min Z W, Xiao X, et al. Recycled tandem catalysts promising ultralow overpotential Li-CO2 batteries[J]. Advanced Materials, 2024, 36(1): e2309264. |
21 | Chourasia A K, Shavez M, Naik K M, et al. Candle soot nanoparticles versus multiwalled carbon nanotubes as a high-performance cathode catalyst for Li-CO2Mars batteries for Mars exploration[J]. ACS Applied Energy Materials, 2023, 6(1): 378-386. |
22 | Zhou J W, Cheng J L, Wang B, et al. Flexible metal-gas batteries: a potential option for next-generation power accessories for wearable electronics[J]. Energy & Environmental Science, 2020, 13(7): 1933-1970. |
23 | Gowda S R, Brunet A, Wallraff G M, et al. Implications of CO2 contamination in rechargeable nonaqueous Li-O2 batteries[J]. The Journal of Physical Chemistry Letters, 2013, 4(2): 276-279. |
24 | Zhao Z W, Huang J, Peng Z Q. Achilles’ heel of lithium-air batteries: lithium carbonate[J]. Angewandte Chemie International Edition, 2018, 57(15): 3874-3886. |
25 | Yang S X, He P, Zhou H S. Exploring the electrochemical reaction mechanism of carbonate oxidation in Li-air/CO2 battery through tracing missing oxygen[J]. Energy & Environmental Science, 2016, 9(5): 1650-1654. |
26 | Li J X, Zhang K, Wang B J, et al. Light-assisted metal-air batteries: progress, challenges, and perspectives[J]. Angewandte Chemie International Edition, 2022, 61(51): e202213026. |
27 | Savunthari K V, Chen C H, Chen Y R, et al. Effective Ru/CNT cathode for rechargeable solid-state Li-CO2 batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44266-44273. |
28 | Guo C, Zhang F L, Han X, et al. Intrinsic descriptor guided noble metal cathode design for Li-CO2 battery[J]. Advanced Materials, 2023, 35(33): e2302325. |
29 | Wang Y F, Ji G J, Song L N, et al. A highly reversible lithium–carbon dioxide battery based on soluble oxalate[J]. ACS Energy Letters, 2023, 8(2): 1026-1034. |
30 | Fan L, Shen H M, Ji D X, et al. Biaxially compressive strain in Ni/Ru core/shell nanoplates boosts Li-CO2 batteries[J]. Advanced Materials, 2022, 34(30): e2204134. |
31 | Zhou J W, Wang T S, Chen L, et al. Boosting the reaction kinetics in aprotic lithium-carbon dioxide batteries with unconventional phase metal nanomaterials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(40): e2204666119. |
32 | Chen L, Zhou J W, Zhang J X, et al. Copper indium sulfide enables Li-CO2 batteries with boosted reaction kinetics and cycling stability[J]. Energy & Environmental Materials, 2023, 6(5): 12415. |
33 | Zhang Z, Yang C, Wu S S, et al. Exploiting synergistic effect by integrating ruthenium-copper nanoparticles highly co-dispersed on graphene as efficient air cathodes for Li-CO2 batteries[J]. Advanced Energy Materials, 2019, 9(8): 1802805. |
34 | Li J X, Zhang K, Zhao Y, et al. High-efficiency and stable Li-CO2 battery enabled by carbon nanotube/carbon nitride heterostructured photocathode[J]. Angewandte Chemie International Edition, 2022, 61(4): e202114612. |
35 | Wang J H, Li S, Chen Y F, et al. Phthalocyanine based metal-organic framework ultrathin nanosheet for efficient photocathode toward light-assisted Li-CO2 battery[J]. Advanced Functional Materials, 2022, 32(49): 2210259. |
36 | Wang X X, Guan D H, Li F, et al. A renewable light-promoted flexible LiCO2 battery with ultrahigh energy efficiency of 97.9%[J]. Small, 2021, 17(26): e2100642. |
37 | Zhu T, Wang S, Yu Z Q, et al. High-performance Li-CO2 battery based on carbon-free porous Ru@QNFs cathode[J]. Small, 2023, 19(33): e2301498. |
38 | Wang C Z, Shang Y, Lu Y C, et al. Photoinduced homogeneous RuO2 nanoparticles on TiO2 nanowire arrays: a high-performance cathode toward flexible Li-CO2 batteries[J]. Journal of Power Sources, 2020, 475: 228703. |
39 | Zhang K, Li J X, Zhai W J, et al. Boosting cycling stability and rate capability of Li-CO2 batteries via synergistic photoelectric effect and plasmonic interaction[J]. Angewandte Chemie International Edition, 2022, 61(17): e202201718. |
40 | Guan D H, Wang X X, Li M L, et al. Light/electricity energy conversion and storage for a hierarchical porous In2S3@CNT/SS cathode towards a flexible Li-CO2 battery[J]. Angewandte Chemie International Edition, 2020, 59(44): 19518-19524. |
41 | Ma Y, Wang X L, Jia Y S, et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations[J]. Chemical Reviews, 2014, 114(19): 9987-10043. |
42 | Jena A, Hsieh H C, Thoka S, et al. Curtailing the overpotential of Li-CO2 batteries with shape-controlled Cu2O as cathode: effect of illuminating the cathode[J]. ChemSusChem, 2020, 13(10): 2719-2725. |
43 | Li Z, Li M L, Wang X X, et al. In situ fabricated photo-electro-catalytic hybrid cathode for light-assisted lithium-CO2 batteries[J]. Journal of Materials Chemistry A, 2020, 8(29): 14799-14806. |
44 | Guan D H, Wang X X, Li F, et al. All-solid-state photo-assisted Li-CO2 battery working at an ultra-wide operation temperature[J]. ACS Nano, 2022, 16(8): 12364-12376. |
45 | Long L Z, Ding Y Y, Liang N N, et al. A carbon-free and free-standing cathode from mixed-phase TiO2 for photo-assisted Li-CO2 battery[J]. Small, 2023, 19(27): e2300519. |
46 | Zhao Z W, Wang E K, Wang J W, et al. Kinetics of the CO2 reduction reaction in aprotic Li–CO2 batteries: a model study[J]. Journal of Materials Chemistry A, 2021, 9(6): 3290-3296. |
47 | Yang C, Guo K K, Yuan D W, et al. Unraveling reaction mechanisms of Mo2C as cathode catalyst in a Li-CO2 battery[J]. Journal of the American Chemical Society, 2020, 142(15): 6983-6990. |
48 | Xu S M, Das S K, Archer L A. The Li–CO2 battery: a novel method for CO2 capture and utilization[J]. RSC Advances, 2013, 3(18): 6656-6660. |
49 | Wang S, Song H C, Zhu T, et al. An ultralow-charge-overpotential and long-cycle-life solid-state Li-CO2 battery enabled by plasmon-enhanced solar photothermal catalysis[J]. Nano Energy, 2022, 100: 107521. |
50 | Pipes R, Bhargav A, Manthiram A. Nanostructured anatase titania as a cathode catalyst for Li-CO2 batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(43): 37119-37124. |
51 | Xu Y Y, Gong H, Ren H, et al. Highly efficient Cu-porphyrin-based metal-organic framework nanosheet as cathode for high-rate Li-CO2 battery[J]. Small, 2022, 18(45): e2203917. |
52 | Gong H, Wang T, Xue H R, et al. Photo-enhanced lithium oxygen batteries with defective titanium oxide as both photo-anode and air electrode[J]. Energy Storage Materials, 2018, 13: 49-56. |
53 | Baek K, Jeon W C, Woo S, et al. Synergistic effect of quinary molten salts and ruthenium catalyst for high-power-density lithium-carbon dioxide cell[J]. Nature Communications, 2020, 11: 456. |
54 | Ahmadiparidari A, Warburton R E, Majidi L, et al. A long-cycle-life lithium-CO2 battery with carbon neutrality[J]. Advanced Materials, 2019, 31(40): 1902518. |
55 | Guo Q, Zhou C Y, Ma Z B, et al. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges[J]. Advanced Materials, 2019, 31(50): e1901997. |
56 | Hu J Y, Su C B, Li R J, et al. High-performance Li-CO2 batteries enabled by synergistic interaction of iron dopant-modulated catalysts and nitrogen-modified substrates[J]. Journal of Alloys and Compounds, 2024, 976: 173146. |
57 | Liu J, Ma N K, Wu W, et al. Recent progress on photocatalytic heterostructures with full solar spectral responses[J]. Chemical Engineering Journal, 2020, 393: 124719. |
58 | Low J, Yu J G, Jaroniec M, et al. Heterojunction photocatalysts[J]. Advanced Materials, 2017, 29(20): 1601694. |
59 | Jin Y C, Liu Y, Song L, et al. Interfacial engineering in hollow NiS2/FeS2-NSGA heterostructures with efficient catalytic activity for advanced Li-CO2 battery[J]. Chemical Engineering Journal, 2022, 430: 133029. |
60 | Sun Z M, Wang D, Lin L, et al. Ultrathin hexagonal boron nitride as a van der Waals’ force initiator activated graphene for engineering efficient non-metal electrocatalysts of Li-CO2 battery[J]. Nano Research, 2022, 15(2): 1171-1177. |
61 | Cheng Z B, Wu Z Y, Tang Y Y, et al. Cationic metal-organic framework derived ruthenium-copper nano-alloys in porous carbon to catalytically boost the cycle life of Li-CO2 batteries[J]. Nanoscale, 2022, 14(40): 15073-15078. |
62 | Han J R, Wu H Y, Song R L, et al. Defect-rich porous carbon as a metal-free catalyst for high-performance Li-CO2 batteries[J]. Electrochimica Acta, 2024, 477: 143779. |
63 | Qie L, Lin Y, Connell J W, et al. Highly rechargeable lithium-CO2 batteries with a boron- and nitrogen-codoped holey-graphene cathode[J]. Angewandte Chemie International Edition, 2017, 56(24): 6970-6974. |
64 | 王禹婷, 杨天怡, 章应辉. 卟啉框架材料在光催化领域的应用[J]. 应用化学, 2020, 37(6): 611-619. |
Wang Y T, Yang T Y, Zhang Y H. Application of porphyrin-based framework materials on photocatalysis[J]. Chinese Journal of Applied Chemistry, 2020, 37(6): 611-619. | |
65 | 焦帅, 杨磊, 武婷婷, 等. 混合盐模板法制备超级电容器用氮掺杂分级多孔碳纳米片[J]. 化工学报, 2021, 72(5): 2869-2877. |
Jiao S, Yang L, Wu T T, et al. Synthesis of nitrogen doped hierarchically porous carbon nanosheets for supercapacitor by mixed salt template[J]. CIESC Journal, 2021, 72(5): 2869-2877. | |
66 | 后振中, 彭龙贵, 李颖, 等. 分级多孔聚吡咯膜的界面自组装合成与电化学电容性[J]. 化工学报, 2018, 69(9): 4121-4128. |
Hou Z Z, Peng L G, Li Y, et al. Interfacial self-assembly synthesis and electrochemical capacitance of hierarchical porous polypyrrole films[J]. CIESC Journal, 2018, 69(9): 4121-4128. | |
67 | Hu C, Tu S C, Tian N, et al. Photocatalysis enhanced by external fields[J]. Angewandte Chemie International Edition, 2021, 60(30): 16309-16328. |
68 | Sun Z H, Yin H, Liu K L, et al. Machine learning accelerated calculation and design of electrocatalysts for CO2 reduction[J]. SmartMat, 2022, 3(1): 68-83. |
69 | Liu J W, Luo W Z, Wang L, et al. Toward excellence of electrocatalyst design by emerging descriptor-oriented machine learning[J]. Advanced Functional Materials, 2022, 32(17): 2110748. |
70 | Németh K, Srajer G. CO2/oxalate cathodes as safe and efficient alternatives in high energy density metal–air type rechargeable batteries[J]. RSC Advances, 2014, 4(4): 1879-1885. |
71 | Qiao Y, Yi J, Wu S C, et al. Li-CO2 electrochemistry: a new strategy for CO2 fixation and energy storage[J]. Joule, 2017, 1(2): 359-370. |
72 | Su L W, Zhou Z, Qin X, et al. CoCO3 submicrocube/graphene composites with high lithium storage capability[J]. Nano Energy, 2013, 2(2): 276-282. |
[1] | Guoyi XIAN, Lifang CHEN, Zhiwen QI. DFT-based study of liquid-phase Beckmann rearrangement mechanism of cyclohexanone oxime [J]. CIESC Journal, 2024, 75(1): 302-311. |
[2] | YE Kai, LIU Xianghua, JIANG Yue, YU Ying, ZHAO Yafei, ZHUANG Ye, ZHENG Jinbao, CHEN Binghui. Combing low-temperature plasma with CeO2/13X for toluene degradation [J]. CIESC Journal, 2021, 72(7): 3706-3715. |
[3] | ZHU Qianqian, JIN Haibo, GUO Xiaoyan, HE Guangxiang, MA Lei, ZHANG Rongyue, GU Qingyang, YANG Suohe. Study on synthesis of ε-caprolactone with MgO catalysis by Baeyer-Villiger green oxidation of cyclohexanone in H2O2/acetonitrile system [J]. CIESC Journal, 2021, 72(5): 2638-2646. |
[4] | Gang WANG,Xuezhi DUAN,Weikang YUAN,Xinggui ZHOU. Mechanistic insights into catalytic isomerization of propylene oxide over TS-1 [J]. CIESC Journal, 2021, 72(10): 5150-5158. |
[5] | Hong ZHANG, Liu TANG. Study on reaction mechanism of p-type dopant Cp2Mg in MOCVD gas phase [J]. CIESC Journal, 2020, 71(7): 3000-3008. |
[6] | Yan JIN, Qian YANG, Wenbin ZHAO, Baoshan HU. Catalytic reaction system for controllable synthesis of graphene with chemical vapor deposition [J]. CIESC Journal, 2020, 71(6): 2564-2585. |
[7] | Lufeng WANG, Xin QIAN, Lifang DENG, Haoran YUAN. Recent progress on catalysts about electrochemical synthesis of ammonia from nitrogen [J]. CIESC Journal, 2019, 70(8): 2854-2863. |
[8] | Yonggang CHENG, Jiao LIU, Zhennan HAN, Lei SHI, Guangwen XU. Transfer dynamics and reaction control mechanism over methanation catalyst particles in transport bed [J]. CIESC Journal, 2019, 70(8): 2876-2887. |
[9] | Tianshui LIANG, Zongying WANG, Kun GAO, Runwan LI, Zheng WANG, Wei ZHONG, Jun ZHAO. Analysis of fire suppression effectiveness of ultra-fine water mist containing iron compounds additives in cup burner [J]. CIESC Journal, 2019, 70(3): 1236-1242. |
[10] | ZHANG Yi, LI Jianbo, WANG Quanhai, LU Xiaofeng. Simulation of NOx formation in novel dual circulating fluidized-bed boiler [J]. CIESC Journal, 2018, 69(4): 1703-1713. |
[11] | LI Shuyan, SUN Lina, SHEN Shujun, CHENG Tianxing, CHENG Shuanghua, CHEN Jiuxi. Reaction of diaryl disulfides with nitroarenes [J]. CIESC Journal, 2017, 68(6): 2394-2398. |
[12] | ZHANG Hongmei, LIN Feng, REN Mingqi, LI Jinlian, HAO Yulan, WU Hongjun, ZHAO Jingying, ZHAO Liang, HE Yongdian. Free radical models of small molecular alkane pyrolysis [J]. CIESC Journal, 2017, 68(4): 1423-1433. |
[13] | ZHANG Guangjie, GENG Yanlou, AN Hualiang, ZHAO Xinqiang, WANG Yanji. Synthesis of propylene carbonate from CO2 and 1,2-propylene glycol on fixed-bed reactor and its reaction mechanism catalyzed by Zn(OAc)2/AC [J]. CIESC Journal, 2015, 66(2): 567-575. |
[14] | WANG Caijun, LU Shaojie, WANG Ping. Sub-grid scale combustion model based on REDIM method and its application [J]. CIESC Journal, 2015, 66(12): 4948-4959. |
[15] | WANG Rongjie, SHEN Benxian, MA Jian, ZHAO Jigang. Ring-open reaction mechanism of sulfur S8 based on density functional theory [J]. CIESC Journal, 2015, 66(10): 3919-3924. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||