CIESC Journal ›› 2024, Vol. 75 ›› Issue (1): 302-311.DOI: 10.11949/0438-1157.20230643
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Guoyi XIAN(), Lifang CHEN(), Zhiwen QI
Received:
2023-06-28
Revised:
2023-12-14
Online:
2024-03-11
Published:
2024-01-25
Contact:
Lifang CHEN
通讯作者:
陈立芳
作者简介:
咸国义(1998—),男,硕士研究生,1796424721@qq.com
基金资助:
CLC Number:
Guoyi XIAN, Lifang CHEN, Zhiwen QI. DFT-based study of liquid-phase Beckmann rearrangement mechanism of cyclohexanone oxime[J]. CIESC Journal, 2024, 75(1): 302-311.
咸国义, 陈立芳, 漆志文. 基于DFT的环己酮肟液相贝克曼重排机理研究[J]. 化工学报, 2024, 75(1): 302-311.
Add to citation manager EndNote|Ris|BibTeX
1 | 董继龙, 魏建伟, 王红琴, 等. 我国己内酰胺合成技术研究进展及市场分析[J]. 化工新型材料, 2020, 48(S1): 24-27. |
Dong J L, Wei J W, Wang H Q, et al. Research progress and market analysis of caprolactam synthesis technology in China[J]. New Chemical Materials, 2020, 48(S1): 24-27. | |
2 | 孙欲晓, 赵伟, 杨明辉. 己内酰胺的生产及市场分析[J]. 化学工业, 2020, 38(4): 87-90. |
Sun Y X, Zhao W, Yang M H. Production and market analysis of caprolactam[J]. Chemical Industry, 2020, 38(4): 87-90. | |
3 | 武晓婷, 谢丽, 张晓昕, 等. 微量杂质对己内酰胺产品质量的影响[J]. 石油炼制与化工, 2020, 51(5): 79-84. |
Wu X T, Xie L, Zhang X X, et al. Influence of trace impurities on properties of caprolactam[J]. Petroleum Processing and Petrochemicals, 2020, 51(5): 79-84. | |
4 | Kaur K, Srivastava S. Beckmann rearrangement catalysis: a review of recent advances[J]. New Journal of Chemistry, 2020, 44(43): 18530-18572. |
5 | Yu L, Guo L P, Hu W L, et al. One-pot conversion of ketones to amides via Beckmann rearrangement catalyzed by metal chloride-ionic liquids under solvent-free condition[J]. Catalysis Communications, 2019, 123: 119-123. |
6 | Kumar R, Shah S, Paramita Das P, et al. An overview of caprolactam synthesis[J]. Catalysis Reviews, 2019, 61(4): 516-594. |
7 | Annath H, Chapman S, Donnelly G F, et al. Heterogenized ionic liquid-metal oxide hybrids: enhanced catalytic activity in the liquid-phase Beckmann rearrangement[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: 16797-16805. |
8 | Fernández-Stefanuto V, Verdía P, Tojo E. A new procedure to obtain ɛ-caprolactam catalyzed by a guanidinium salt[J]. New Journal of Chemistry, 2017, 41(21): 12830-12834. |
9 | Li Z H, Yang Q S, Gao L Y, et al. Reactivity of hydroxylamine ionic liquid salts in the direct synthesis of caprolactam from cyclohexanone under mild conditions[J]. RSC Advances, 2016, 6(87): 83619-83625. |
10 | Kalkhambkar R G, Savanur H M. Highly efficient synthesis of amides from ketoximes using trifluoromethanesulphonic anhydride[J]. RSC Advances, 2015, 5(74): 60106-60113. |
11 | Du C C, Zhang J S, Li L T, et al. Impurity formation in the Beckmann rearrangement of cyclohexanone oxime to yield ε- caprolactam[J]. Industrial & Engineering Chemistry Research, 2017, 56(48): 14207-14213. |
12 | Mao D, Long Z Y, Zhou Y, et al. Dual-sulfonated dipyridinium phosphotungstate catalyst for liquid-phase Beckmann rearrangement of cyclohexanone oxime[J]. RSC Advances, 2014, 4(30): 15635-15641. |
13 | Zhang X, Mao D, Leng Y, et al. Heterogeneous Beckmann rearrangements catalyzed by a sulfonated imidazolium salt of phosphotungstate[J]. Catalysis Letters, 2013, 143(2): 193-199. |
14 | Kore R, Srivastava R. A simple, eco-friendly, and recyclable bi-functional acidic ionic liquid catalysts for Beckmann rearrangement[J]. Journal of Molecular Catalysis A: Chemical, 2013, 376: 90-97. |
15 | 唐伟强, 谢鹏, 徐小飞, 等. 反应密度泛函理论的构建与初步应用[J]. 化工学报, 2021, 72(2): 633-652. |
Tang W Q, Xie P, Xu X F, et al. Development and applications of reaction density functional theory[J]. CIESC Journal, 2021, 72(2): 633-652. | |
16 | 梁天水, 王新科, 刘德智, 等. 全氟三乙胺热解机理的实验与理论研究[J]. 化工学报, 2022, 73(10): 4762-4768. |
Liang T S, Wang X K, Liu D Z, et al. Experimental and theoretical study on pyrolysis mechanism of perfluorotriethylamine[J]. CIESC Journal, 2022, 73(10): 4762-4768. | |
17 | 罗小松, 黄金保, 周梅, 等. 对苯二甲酸丁二醇酯二聚体水/醇/氨解机理的理论研究[J]. 化工学报, 2022, 73(11): 4859-4871. |
Luo X S, Huang J B, Zhou M, et al. Theoretical study on the mechanism of hydrolysis/alcoholysis /ammonolysis of butanediol terephthalate dimer[J]. CIESC Journal, 2022, 73(11): 4859-4871. | |
18 | Erigoni A, Newland S H, Paul G, et al. Creating accessible active sites in hierarchical MFI zeolites for low-temperature acid catalysis[J]. ChemCatChem, 2016, 8(19): 3161-3169. |
19 | Potter M E, Chapman S, O'Malley A J, et al. Understanding the role of designed solid acid sites in the low-temperature production of ɛ-caprolactam[J]. ChemCatChem, 2017, 9(11): 1897-1900. |
20 | Wang Z C, Ling H J, Shi J, et al. Acidity enhanced [Al]MCM-41 via ultrasonic irradiation for the Beckmann rearrangement of cyclohexanone oxime to ɛ-caprolactam[J]. Journal of Catalysis, 2018, 358: 71-79. |
21 | Vilas M, Tojo E. A mild and efficient way to prepare ε- caprolactam by using a novel salt related with ionic liquids[J]. Tetrahedron Letters, 2010, 51(31): 4125-4128. |
22 | Zhang J S, Riaud A, Wang K, et al. Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam in a modified catalytic system of trifluoroacetic acid[J]. Catalysis Letters, 2014, 144(1): 151-157. |
23 | Giri S, Inostroza-Rivera R, Jana M. The Beckmann rearrangement in the framework of reaction electronic flux[J]. Theoretical Chemistry Accounts, 2017, 136(1): 9. |
24 | Ronchin L, Bortoluzzi M, Vavasori A. A DFT study on secondary reaction pathways in the acid-catalysed Beckmann rearrangement of cyclohexanone oxime in aprotic solvent[J]. Journal of Molecular Structure: THEOCHEM, 2008, 858(1/2/3): 46-51. |
25 | Fukui K. Formulation of the reaction coordinate[J]. The Journal of Physical Chemistry, 1970, 74(23): 4161-4163. |
26 | Fukui K. The path of chemical reactions—the IRC approach[J]. Accounts of Chemical Research, 1981, 14(12): 363-368. |
27 | Truhlar D G, Garrett B C, Klippenstein S J. Current status of transition-state theory[J]. The Journal of Physical Chemistry, 1996, 100(31): 12771-12800. |
28 | Lu T A, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
29 | Ríos-Gutiérrez M, Layeb H, Domingo L R. A DFT study of the mechanism of Brønsted acid catalysed Povarov reactions[J]. Tetrahedron, 2015, 71(49): 9339-9345. |
30 | Murdoch J R. What is the rate-limiting step of a multistep reaction?[J]. Journal of Chemical Education, 1981, 58(1): 32. |
31 | 申涛, 杜凤沛, 刘婷, 等. 咪唑甘油磷酸酯脱水酶与含氮杂环磷酸酯类抑制剂作用方式的分子模拟[J]. 物理化学学报, 2011, 27(8): 1831-1838. |
Shen T, Du F P, Liu T, et al. Molecular simulation of the interaction between imidazole glycerol phosphate dehydrase and nitrogen-containing heterocyclic phosphate inhibitors[J]. Acta Physico-Chimica Sinica, 2011, 27(8): 1831-1838. | |
32 | 付蓉, 卢天, 陈飞武. 亲电取代反应中活性位点预测方法的比较[J]. 物理化学学报, 2014, 30(4): 628-639. |
Fu R, Lu T, Chen F W. Comparing methods for predicting the reactive site of electrophilic substitution[J]. Acta Physico-Chimica Sinica, 2014, 30(4): 628-639. | |
33 | Cao J S, Ren Q, Chen F W, et al. Comparative study on the methods for predicting the reactive site of nucleophilic reaction[J]. Science China Chemistry, 2015, 58(12): 1845-1852. |
34 | Sun S Q, Liu S W, Yu F L, et al. High-yield and high-efficiency conversion of cyclohexanone oxime to ε-caprolactam in a green and facile reaction process over deep eutectic solvents[J]. Chemical Engineering Science, 2022, 253: 117519. |
35 | Kiely-Collins H J, Sechi I, Brennan P E, et al. Mild, calcium catalysed Beckmann rearrangements[J]. Chemical Communications, 2018, 54(6): 654-657. |
36 | Xie F K, Du C, Pang Y D, et al. Lewis acid-assisted N-fluorobenzenesulfonimide-based electrophilic fluorine catalysis in Beckmann rearrangement[J]. Tetrahedron Letters, 2016, 57(51): 5820-5824. |
37 | Zhao F F, You K Y, Peng C, et al. A simple and efficient approach for preparation of hydroxylamine sulfate from the acid-catalyzed hydrolysis reaction of cyclohexanone oxime[J]. Chemical Engineering Journal, 2015, 272: 102-107. |
38 | Egberink H, van Heerden C. The mechanism of the formation and hydrolysis of cyclohexanone oxime in aqueous solutions[J]. Analytica Chimica Acta, 1980, 118(2): 359-368. |
39 | Wang Q S, Wei C Y, Pérez L M, et al. Thermal decomposition pathways of hydroxylamine: theoretical investigation on the initial steps[J]. The Journal of Physical Chemistry A, 2010, 114(34): 9262-9269. |
40 | Wei C Y, Saraf S R, Rogers W J, et al. Thermal runaway reaction hazards and mechanisms of hydroxylamine with acid/base contaminants[J]. Thermochimica Acta, 2004, 421(1/2): 1-9. |
41 | Cisneros L O, Wu X, Rogers W J, et al. Decomposition products of 50 mass% hydroxylamine/water under runaway reaction conditions[J]. Process Safety and Environmental Protection, 2003, 81(2): 121-124. |
42 | Guo X, Wang Z Y, Yang Y, et al. Highly efficient catalyzed by imidazolium-based dual-sulfonic acid functionalized ionic liquids for liquid phase Beckmann rearrangement: experiments and COSMO-RS calculations[J]. Green Chemical Engineering, doi:10.1016/j.gce.2023.01.002 . |
[1] | Qi LIU, Zikang CHEN, Yu PIAO, Peng XIAO, Yafen GE, Yanjun GONG. Zeolite catalysts for catalytic cracking of hydrocarbon to increase light olefins selectivity [J]. CIESC Journal, 2024, 75(1): 120-137. |
[2] | Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas [J]. CIESC Journal, 2024, 75(1): 377-390. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[5] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[6] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[7] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[8] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[9] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[10] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[11] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[12] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[13] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[14] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[15] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||