CIESC Journal ›› 2024, Vol. 75 ›› Issue (7): 2465-2473.DOI: 10.11949/0438-1157.20240373
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Banghan WU1(), Dingbiao LIN2, Haifeng LU1(
), Xiaolei GUO1, Haifeng LIU1
Received:
2024-04-07
Revised:
2024-04-16
Online:
2024-08-09
Published:
2024-07-25
Contact:
Haifeng LU
吴邦汉1(), 林定标2, 陆海峰1(
), 郭晓镭1, 刘海峰1
通讯作者:
陆海峰
作者简介:
吴邦汉(2000—),男,硕士研究生,3232382914@qq.com
基金资助:
CLC Number:
Banghan WU, Dingbiao LIN, Haifeng LU, Xiaolei GUO, Haifeng LIU. Pipe pressure drop and transfer bottle conveying characteristics in vertical pipe pneumatic logistics transmission system[J]. CIESC Journal, 2024, 75(7): 2465-2473.
吴邦汉, 林定标, 陆海峰, 郭晓镭, 刘海峰. 竖直管气动物流传输系统管道压降和传送瓶输送特性[J]. 化工学报, 2024, 75(7): 2465-2473.
传送瓶种类 | Ug/(m/s) | ΔP/Pa | h/m | Us/(m/s) | 传送瓶状态 |
---|---|---|---|---|---|
a | [0.04, 0.18] | [90.34, 492.63] | — | — | 静止 |
a | (0.18 1.21) | [437.63, 529.89] | [0.015, 0.060] | — | 悬浮 |
a | [1.21, 1.82] | [320.18, 522.07] | 1.500 | [0.50, 1.68] | 运动 |
b | [0.11, 0.58] | [142.18, 783.81] | — | — | 静止 |
b | (0.58, 2.40) | [669.79, 745.62] | [0.005, 0.066] | — | 悬浮 |
b | [2.40, 2.68] | [301.23, 502.37] | 1.500 | [0.46, 1.20] | 运动 |
Table 1 Experimental conditions
传送瓶种类 | Ug/(m/s) | ΔP/Pa | h/m | Us/(m/s) | 传送瓶状态 |
---|---|---|---|---|---|
a | [0.04, 0.18] | [90.34, 492.63] | — | — | 静止 |
a | (0.18 1.21) | [437.63, 529.89] | [0.015, 0.060] | — | 悬浮 |
a | [1.21, 1.82] | [320.18, 522.07] | 1.500 | [0.50, 1.68] | 运动 |
b | [0.11, 0.58] | [142.18, 783.81] | — | — | 静止 |
b | (0.58, 2.40) | [669.79, 745.62] | [0.005, 0.066] | — | 悬浮 |
b | [2.40, 2.68] | [301.23, 502.37] | 1.500 | [0.46, 1.20] | 运动 |
传送瓶种类 | 管道压降模型 | 适用分区 | 管道特征阻力系数 | 拟合相关系数R2 | 预测平均相对误差/% |
---|---|---|---|---|---|
a | 式(1) | 静止区 | k=2793.49 | 0.99 | 9.36 |
b | k=1435.10 | 0.99 | 5.26 | ||
a | 式(2) | 悬浮区 | — | — | 8.48 |
b | 13.99 | ||||
a | 式(3) | 悬浮区 | — | — | 11.48 |
b | 6.25 | ||||
a | 式(4) | 运动区 | ε3=2.06×104Re-2;228≤Re≤1171 | 0.99 | 5.77 |
b | ε3=2.50×109Re-3.43;2152≤Re≤3156 | 1.80 | |||
0.96 |
Table 2 Pipe pressure drop modeling results
传送瓶种类 | 管道压降模型 | 适用分区 | 管道特征阻力系数 | 拟合相关系数R2 | 预测平均相对误差/% |
---|---|---|---|---|---|
a | 式(1) | 静止区 | k=2793.49 | 0.99 | 9.36 |
b | k=1435.10 | 0.99 | 5.26 | ||
a | 式(2) | 悬浮区 | — | — | 8.48 |
b | 13.99 | ||||
a | 式(3) | 悬浮区 | — | — | 11.48 |
b | 6.25 | ||||
a | 式(4) | 运动区 | ε3=2.06×104Re-2;228≤Re≤1171 | 0.99 | 5.77 |
b | ε3=2.50×109Re-3.43;2152≤Re≤3156 | 1.80 | |||
0.96 |
1 | 周海军, 熊源泉. 补充风对水平管高压密相气力输送影响的模拟研究[J]. 化工学报, 2020, 71(2): 602-613. |
Zhou H J, Xiong Y Q. Simulation study on influence of supplementary gas on dense-phase pneumatic conveying in horizontal pipe under high pressure[J]. CIESC Journal, 2020, 71(2): 602-613. | |
2 | Shibani W M, Zulkafli M F, Basuno B. Methods of transport technologies: a review on using tube/tunnel systems[J]. IOP Conference Series: Materials Science and Engineering, 2016, 160: 012042. |
3 | Hidalgo D, Martín-Marroquín J M, Corona F, et al. Sustainable vacuum waste collection systems in areas of difficult access[J]. Tunnelling and Underground Space Technology, 2018, 81: 221-227. |
4 | Wandel S, Anderberg S, Larsson F E, et al. Underground capsule pipeline logistic system feasibility study of an urban application[J]. Transportation Research Procedia, 2023, 72: 3126-3133. |
5 | Turkowski M, Szudarek M. Pipeline system for transporting consumer goods, parcels and mail in capsules[J]. Tunnelling and Underground Space Technology, 2019, 93: 103057. |
6 | Jamwal A, Agrawal R, Sharma M. Deep learning for manufacturing sustainability: models, applications in Industry 4.0 and implications[J]. International Journal of Information Management Data Insights, 2022, 2(2): 100107. |
7 | Wang S H, Wang X Q, Chen S S. Global value chains and carbon emission reduction in developing countries: does industrial upgrading matter?[J]. Environmental Impact Assessment Review, 2022, 97: 106895. |
8 | Li Y Y, Gao Y, Sun X H, et al. Study on flow velocity during wheeled capsule hydraulic transportation in a horizontal pipe[J]. Water, 2020, 12(4): 1181. |
9 | Asim T, Mishra R. Computational fluid dynamics based optimal design of hydraulic capsule pipelines transporting cylindrical capsules[J]. Powder Technology, 2016, 295: 180-201. |
10 | Khalil M F, Kassab S Z, Adam I G, et al. Turbulent flow around single concentric long capsule in a pipe[J]. Applied Mathematical Modelling, 2010, 34(8): 2000-2017. |
11 | Asim T, Algadi A, Mishra R. Effect of capsule shape on hydrodynamic characteristics and optimal design of hydraulic capsule pipelines[J]. Journal of Petroleum Science and Engineering, 2018, 161: 390-408. |
12 | Ulusarslan D. Effect of diameter ratio on loss coefficient of elbows in the flow of low-density spherical capsule trains[J]. Particulate Science and Technology, 2010, 28(4): 348-359. |
13 | Zhang C J, Sun X H, Li Y Y, et al. Effects of guide vane placement angle on hydraulic characteristics of flow field and optimal design of hydraulic capsule pipelines[J]. Water, 2018, 10(10): 1378. |
14 | Yang R X, Qiu S J, Song W J, et al. Effects of centrifugation prior to pneumatic tube system transport on routine biochemical and immunological tests of susceptibility to hemolysis[J]. Clinica Chimica Acta, 2023, 541: 117242. |
15 | 付列武. “气动物流+智能机器人” 在医院物流传输系统中的应用趋势[J]. 工程建设, 2020, 52(6): 1-5. |
Fu L W. Trend of applying “pneumatic logistics+intelligent robot ” in hospital logistics transmission system[J]. Engineering Construction, 2020, 52(6): 1-5. | |
16 | Kosugi S. Pneumatic capsule pipelines in Japan and future developments[M]//Handbook of Powder Technology. Amsterdam: Elsevier, 2001: 505-511. |
17 | Ohashi A, Yanaida K. The fluid mechanics of capsule pipelines (1st report): Analysis of the required pressure drop for hydraulic and pneumatic capsules[J]. Bulletin of JSME, 1986, 29(252): 1719-1725. |
18 | Tsuji Y, Morikawa Y, Chono S, et al. Fundamental investigation of the capsule transport (2nd Rep): Wake of a capsule and the effect of interaction between two capsules on the drag[J]. Bulletin of JSME, 1984, 27(225): 468-474. |
19 | Hane K, Okutsu K, Matsui N, et al. Applicability of pneumatic capsule pipeline system to radioactive waste disposal facility[C]// New Pipeline Technologies, Security, and Safety: Proceedings of the ASCE International Conference on Pipeline Engineering and Construction. Baltimore, Maryland, 2003: 1615-1624. |
20 | Cao P L, Liu M M, Chen Z, et al. Theory calculation and testing of air injection parameters in ice core drilling with air reverse circulation[J]. Polar Science, 2018, 17: 23-32. |
21 | Cao P L, Cao H Y, Cao J E, et al. Studies on pneumatic transport of ice cores in reverse circulation air drilling[J]. Powder Technology, 2019, 356: 50-59. |
22 | Zhou X M, Fang F, Li Y D. Numerical method for system level simulation of long-distance pneumatic conveying pipelines[J]. Mathematics, 2022, 10(21): 4073. |
23 | Kosugi S. Effect of traveling resistance factor on pneumatic capsule pipeline system[J]. Powder Technology, 1999, 104(3): 227-232. |
24 | Kern R. Physical modelling of a long pneumatic transmission line: models of successively decreasing complexity and their experimental validation[J]. Mathematical and Computer Modelling of Dynamical Systems, 2017, 23(5): 536-553. |
25 | Lu H F, Ruan H, Guo X L, et al. Study on friction and conveying characteristics of the pneumatic logistics transmission system[J]. Powder Technology, 2023, 417: 118282. |
26 | Belova O V, Vulf M D. Pneumatic capsule transport[J]. Procedia Engineering, 2016, 152: 276-280. |
27 | York K, Liu H. Predicting drag coefficient of pneumatic capsule[J]. Journal of Transportation Engineering, 2001, 127(5): 390-397. |
28 | 王荘, 吕潇, 邵媛媛, 等. 流态化的往昔寻觅及未来启示[J]. 化工学报, 2021, 72(12): 5904-5927. |
Wang Z, Lyu X, Shao Y Y, et al. Early exploration of fluidization theory and its inspiration to the future[J]. CIESC Journal, 2021, 72(12): 5904-5927. | |
29 | 张峰, 张亚新, 马凤云, 等. 流化-输送床中煤的气力分级数值模拟分析[J]. 煤炭转化, 2017, 40(5): 13-19. |
Zhang F, Zhang Y X, Ma F Y, et al. Numerical simulation analysis of pneumatic classification of coal in coupling device for fluidized bed and conveying bed[J]. Coal Conversion, 2017, 40(5): 13-19. | |
30 | 阮琥. 粉体密相气力输送流量调控特性与气动物流传输特性研究[D]. 上海: 华东理工大学, 2023. |
Ruan H. Study on powder flow control characteristics of dense phase pneumatic conveying and pneumatic logistics transmission system[D]. Shanghai: East China University of Science and Technology, 2023. | |
31 | Hager W H. Blasius: a life in research and education[J]. Experiments in Fluids, 2003, 34(5): 566-571. |
32 | Tomita Y, Fujiwara Y. Capsule velocity in pipelines[J]. JSME International Journal. Ser. 2, Fluids Engineering, Heat Transfer, Power, Combustion, Thermophysical Properties, 1992, 35(4): 513-518. |
[1] | Jinpeng ZHAO, Yongmin ZHANG, Bin LAN, Jiewen LUO, Bidan ZHAO, Junwu WANG. Model development and validation of structural two-fluid model for heat transfer in a gas-solid bubbling fluidized bed [J]. CIESC Journal, 2024, 75(4): 1497-1507. |
[2] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[3] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[4] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[5] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[6] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[7] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[8] | Xinya LI, Lei XING, Minghu JIANG, Lixin ZHAO. Research on performance of downhole oil-water separation hydrocyclone enhanced by inverted cone gas injection [J]. CIESC Journal, 2023, 74(3): 1134-1144. |
[9] | Shaohang YAN, Tianwei LAI, Yanwu WANG, Yu HOU, Shuangtao CHEN. Visual experimental study on cavitation of R134a in micro clearance [J]. CIESC Journal, 2023, 74(3): 1054-1061. |
[10] | Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors [J]. CIESC Journal, 2023, 74(2): 511-524. |
[11] | Zhicheng BU, Sizhuo LI, Bo JIAO, Bo WANG, Zhihua GAN. Visualization study on a nitrogen pulsating heat pipe under different condenser temperatures [J]. CIESC Journal, 2023, 74(12): 4892-4903. |
[12] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
[13] | Lin SHENG, Yu CHANG, Jian DENG, Guangsheng LUO. Formation and flow characteristics of ordered bubble swarm in a step T-junction microchannel [J]. CIESC Journal, 2023, 74(1): 416-427. |
[14] | Jia LUO, Shuangying WU, Lan XIAO, Shiyao ZHOU, Zhili CHEN. Experiment on the effect of impact velocities on the local heat transfer characteristics for successive droplets impacting on heated cylindrical surface [J]. CIESC Journal, 2022, 73(7): 2944-2951. |
[15] | Li NIU, Mengxi LIU, Haibei WANG. Hydrodynamic of mesoscale flow structure in dense phase fluidized bed [J]. CIESC Journal, 2022, 73(6): 2622-2635. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 254
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 185
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||