CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1497-1507.DOI: 10.11949/0438-1157.20231332
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jinpeng ZHAO1,2(), Yongmin ZHANG1, Bin LAN2, Jiewen LUO2, Bidan ZHAO1,2,3(), Junwu WANG1,2,3()
Received:
2023-12-13
Revised:
2024-01-16
Online:
2024-06-06
Published:
2024-04-25
Contact:
Bidan ZHAO, Junwu WANG
赵金鹏1,2(), 张永民1, 兰斌2, 罗节文2, 赵碧丹1,2,3(), 王军武1,2,3()
通讯作者:
赵碧丹,王军武
作者简介:
赵金鹏(1997—),男,硕士研究生,jpzhao@ipe.ac.cn
基金资助:
CLC Number:
Jinpeng ZHAO, Yongmin ZHANG, Bin LAN, Jiewen LUO, Bidan ZHAO, Junwu WANG. Model development and validation of structural two-fluid model for heat transfer in a gas-solid bubbling fluidized bed[J]. CIESC Journal, 2024, 75(4): 1497-1507.
赵金鹏, 张永民, 兰斌, 罗节文, 赵碧丹, 王军武. 气固鼓泡床结构双流体传热模型及其模拟验证[J]. 化工学报, 2024, 75(4): 1497-1507.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
颗粒粒径 | |
颗粒密度 | |
气体密度 | |
气体黏度 | |
时间步长 Δ | |
起始流化空隙率 | |
进口表观气速 u | |
初始堆料高度 | |
整体模拟时间/s | 20 |
统计时长/s | 15~20 |
Table 1 Summary of the used parameters
参数 | 数值 |
---|---|
颗粒粒径 | |
颗粒密度 | |
气体密度 | |
气体黏度 | |
时间步长 Δ | |
起始流化空隙率 | |
进口表观气速 u | |
初始堆料高度 | |
整体模拟时间/s | 20 |
统计时长/s | 15~20 |
Fig.4 Comparison of the average wall-to-bed heat transfer coefficients at different heights predicted by experimental, structural two-fluid model, CPFD (Wei’s simulation[38]) with different inlet gas velocities
1 | Capecelatro J, Desjardins O, Fox R O. Numerical study of collisional particle dynamics in cluster induced turbulence[J]. Journal of Fluid Mechanics, 2014, 747: R2. |
2 | Agrawal K, Loezos P N, Syamlal M, et al. The role of meso-scale structures in rapid gas solid flows[J]. Journal of Fluid Mechanics, 2001, 445(1): 151-185. |
3 | Wang S, Luo K, Hu C S, et al. CFD-DEM simulation of heat transfer in fluidized beds: model verification, validation, and application[J]. Chemical Engineering Science, 2019, 197: 280-295. |
4 | Kim S W, Ahn J Y, Kim S D, et al. Heat transfer and bubble characteristics in a fluidized bed with immersed horizontal tube bundle[J]. International Journal of Heat and Mass Transfer, 2003, 46(3): 399-409. |
5 | Blaszczuk A, Pogorzelec M, Shimizu T. Heat transfer characteristics in a large-scale bubbling fluidized bed with immersed horizontal tube bundles[J]. Energy, 2018, 162: 10-19. |
6 | Qiu K Z, Wu F, Yang S L, et al. Heat transfer and erosion mechanisms of an immersed tube in a bubbling fluidized bed: a LES-DEM approach[J]. International Journal of Thermal Sciences, 2016, 100: 357-371. |
7 | Wu C C, Yang H T, He X H, et al. Principle, development, application design and prospect of fluidized bed heat exchange technology: comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2022, 157: 112023. |
8 | Lichtenegger T, Peters E A J F, Kuipers J A M, et al. A recurrence CFD study of heat transfer in a fluidized bed[J]. Chemical Engineering Science, 2017, 172: 310-322. |
9 | Pan H, Chen X Z, Liang X F, et al. CFD simulations of gas-liquid-solid flow in fluidized bed reactors—a review[J]. Powder Technology, 2016, 299: 235-258. |
10 | Armstrong L M, Gu S, Luo K H. Study of wall-to-bed heat transfer in a bubbling fluidised bed using the kinetic theory of granular flow[J]. International Journal of Heat and Mass Transfer, 2010, 53(21/22): 4949-4959. |
11 | Patil D J, Smit J, van Sint Annaland M, et al. Wall-to-bed heat transfer in gas-solid bubbling fluidized beds[J]. AIChE Journal, 2006, 52(1): 58-74. |
12 | Abdelmotalib H M, Ko D G, Im I T. A study on wall-to-bed heat transfer in a conical fluidized bed combustor[J]. Applied Thermal Engineering, 2016, 99: 928-937. |
13 | Abdelmotalib H M, Im I T. Three dimensional modeling of heat transfer and bed flow in a conical fluidized bed reactor[J]. International Journal of Heat and Mass Transfer, 2017, 106: 1335-1344. |
14 | Alnaimat F, AlHamad I M, Mathew B. Heat transfer intensification in MEMS two-fluid parallel flow heat exchangers by embedding pin fins in microchannels[J]. International Journal of Thermofluids, 2021, 9: 100048. |
15 | Rauchenzauner S, Schneiderbauer S. Validation study of a spatially-averaged two-fluid model for heat transport in gas-particle flows[J]. International Journal of Heat and Mass Transfer, 2022, 198: 123382. |
16 | Nagrani P P, Municchi F, Marconnet A M, et al. Two-fluid modeling of heat transfer in flows of dense suspensions[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122068. |
17 | Hou B L, Li H Z. Relationship between flow structure and transfer coefficients in fast fluidized beds[J]. Chemical Engineering Journal, 2010, 157(2/3): 509-519. |
18 | 鲁波娜, 程从礼, 鲁维民, 等. 基于多尺度模型的MIP提升管反应历程数值模拟[J]. 化工学报, 2013, 64(6): 1983-1992. |
Lu B N, Cheng C L, Lu W M, et al. Numerical simulation of reaction process in MIP riser based on multi-scale model[J]. CIESC Journal, 2013, 64(6): 1983-1992. | |
19 | Wang J W. Continuum theory for dense gas-solid flow: a state-of-the-art review[J]. Chemical Engineering Science, 2020, 215: 115428. |
20 | Gao X, Wang L J, Wu C, et al. Novel bubble-emulsion hydrodynamic model for gas-solid bubbling fluidized beds[J]. Industrial & Engineering Chemistry Research, 2013, 52(31): 10835-10844. |
21 | Krishna R, van Baten J M. Using CFD for scaling up gas-solid bubbling fluidised bed reactors with Geldart A powders[J]. Chemical Engineering Journal, 2001, 82(1/2/3): 247-257. |
22 | Zhao B D, Wang J W. Statistical foundation of EMMS-based two-fluid models for heterogeneous gas-solid flow[J]. Chemical Engineering Science, 2021, 241: 116678. |
23 | Wang J W, Zhou Q, Hong K, et al. An EMMS-based multi-fluid model (EFM) for heterogeneous gas-solid riser flows(part Ⅱ): An alternative formulation from dominant mechanisms[J]. Chemical Engineering Science, 2012, 75: 349-358. |
24 | 周泉. 提升管内气固两相流模拟: 基于EMMS理论的连续介质模型[D]. 北京: 中国科学院大学, 2015. |
Zhou Q. Simulation of gas-solid two-phase flow in riser:continuum model based on EMMS theory[D]. Beijing: University of Chinese Academy of Sciences, 2015. | |
25 | Zhao B D, Zhou Q, Wang J W, et al. CFD study of exit effect of high-density CFB risers with EMMS-based two-fluid model[J]. Chemical Engineering Science, 2015, 134: 477-488. |
26 | 罗节文, 王雅彬, 李稳, 等. 气固鼓泡床结构双流体模型及其模拟验证[J]. 过程工程学报, 2024, 24(4): 435-444. |
Luo J W, Wang Y B, Li W, et al. Model development and validation of a structural two-fluid model for gas-solid bubbling fluidized beds[J]. The Chinese Journal of Process Engineering, 2024, 24(4): 435-444. | |
27 | Wang Y B, Liu Y G, Luo J W, et al. Validation of mesoscience-based structural model for simulating gas-solid flows in circulating-turbulent fluidized beds[J]. Powder Technology, 2024, 432: 119136. |
28 | Li W, Liu Y G, Luo J W, et al. Rapid simulation of industrial scale gas-solid BFB with bubble structure based two-fluid method[J]. Chemical Engineering Science, 2024, 288: 119770. |
29 | Wang J. A review of Eulerian simulation of Geldart A particles in gas-fluidized beds[J]. Industrial & Engineering Chemistry Research, 2009, 48(12): 67-77. |
30 | Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M]. Boston: Academic Press, 1994. |
31 | Karamanev D G, Nikolov L N. Free rising spheres do not obey Newton's law for free settling[J]. AIChE Journal, 1992, 38(11): 1843-1846. |
32 | Cai P, Schiavetti M, de Michele G, et al. Quantitative estimation of bubble size in PFBC[J]. Powder Technology, 1994, 80(2): 99-109. |
33 | Thomas D G. Transport characteristics of suspension(Ⅷ): A note on the viscosity of Newtonian suspensions of uniform spherical particles[J]. Journal of Colloid Science, 1965, 20(3): 267-277. |
34 | Abrahamsen A R, Geldart D. Behaviour of gas-fluidized beds of fine powders (part Ⅱ): Voidage of the dense phase in bubbling beds[J]. Powder Technology, 1980, 26(1): 47-55. |
35 | Kunii D, Levenspiel O. Bubbling bed model. Model for flow of gas through a fluidized bed[J]. Industrial & Engineering Chemistry Fundamentals, 1968, 7(3): 446-452 |
36 | Chandran R, Chen J C. A heat transfer model for tubes immersed in gas fluidized beds[J]. AIChE Journal, 1985, 31(2): 244-252. |
37 | Yao X Y, Zhang Y M, Lu C X, et al. Systematic study on heat transfer and surface hydrodynamics of a vertical heat tube in a fluidized bed of FCC particles[J]. AIChE Journal, 2015, 61(1): 68-83. |
38 | 魏庆, 姚秀颖, 张永民. 竖直管气固鼓泡流化床传热机理的CPFD模拟[J]. 化工学报, 2016, 67(5): 1732-1740. |
Wei Q, Yao X Y, Zhang Y M. CPFD simulation on heat transfer mechanism of vertical tube in bubbling fluidized bed[J]. CIESC Journal, 2016, 67(5): 1732-1740. | |
39 | Lan B, Zhao P, Xu J, et al. The critical role of scale resolution in CFD simulation of gas-solid flows: a heat transfer study using CFD-DEM-IBM method[J]. Chemical Engineering Science, 2023, 266: 118268. |
[1] | Zhicheng DENG, Shifeng XU, Qidong WANG, Jiarui WANG, Simin WANG. Process and energy consumption analysis of high salt and high COD wastewater treatment by submerged combustion [J]. CIESC Journal, 2024, 75(3): 1000-1008. |
[2] | Nan TU, Xiaoqun LIU, Chiyu WANG, Jiabin FANG. Study on adaptability of scaling law to residence time distribution in bubbling fluidized beds with continuous operation [J]. CIESC Journal, 2024, 75(2): 543-552. |
[3] | Yao ZHOU, Xiaoping YANG, Yicheng NI, Jiping LIU, Jinjia WEI, Junjie YAN. Numerical simulation of two-phase steam ejector applied in novel loop heat pipe [J]. CIESC Journal, 2024, 75(1): 268-278. |
[4] | Xiaoyang LI, Dong LI, Minglei TAO, Zhifu ZHOU, Lingyi ZHANG, Lizheng SU, Tianning ZHANG, Zhi LI, Bin CHEN. Experimental study on heat transfer characteristics of multi nozzle spray cooling surface [J]. CIESC Journal, 2024, 75(1): 231-241. |
[5] | Yijiang WANG, Li SUN, Menghan LIU, Jinhong YANG, Guoyuan WANG. Optimization on parameter of plate-fin-and-tube air cooler in mines based on response surface method [J]. CIESC Journal, 2024, 75(1): 279-291. |
[6] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[7] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[8] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[9] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[10] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[11] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[12] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[13] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[14] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[15] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||