CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1439-1454.DOI: 10.11949/0438-1157.20231416
• Reviews and monographs • Previous Articles Next Articles
Xiao XUE(), Minjing SHANG, Yuanhai SU()
Received:
2023-12-31
Revised:
2024-03-23
Online:
2024-06-06
Published:
2024-04-25
Contact:
Yuanhai SU
通讯作者:
苏远海
作者简介:
薛潇(1993—),女,博士研究生,xuexiao19@sjtu.edu.cn
基金资助:
CLC Number:
Xiao XUE, Minjing SHANG, Yuanhai SU. Advances on continuous-flow synthesis of drugs in microreactors[J]. CIESC Journal, 2024, 75(4): 1439-1454.
薛潇, 商敏静, 苏远海. 微反应器内药物连续流合成的研究进展[J]. 化工学报, 2024, 75(4): 1439-1454.
Add to citation manager EndNote|Ris|BibTeX
Fig.10 (a) Chip-type microreactor embedding triangular obstacles[60]; (b) Chip-type microreactors with three different channels (linear-like, double-snake-like, snake-like)[61]; (c) Splitting and recombining (SAR) microreactor under the optical microscope[51]
Fig.11 (a) Traditional synthesis route of diazepam[63]; (b) Generation of solids in chip-type microreactor[64]; (c) Experimental setup for the continuous-flow synthesis of diazepam[64]
产物 | 产率/% |
---|---|
5-氨基吲哚 | 96 |
2-萘胺 | 85 |
7-氨基吲哚 | 98 |
4-氨基苯酚 | 96 |
4-哌嗪基苯胺 | 98 |
Table 1 Results for hydrogenation reaction in micropacked-bed reactor of H-Cube
产物 | 产率/% |
---|---|
5-氨基吲哚 | 96 |
2-萘胺 | 85 |
7-氨基吲哚 | 98 |
4-氨基苯酚 | 96 |
4-哌嗪基苯胺 | 98 |
1 | Cui Y J, Song J, Du C C, et al. Determination of the kinetics of chlorobenzene nitration using a homogeneously continuous microflow[J]. AIChE Journal, 2022, 68(4): e17564. |
2 | Jensen K F, Reizman B J, Newman S G. Tools for chemical synthesis in microsystems[J]. Lab on a Chip, 2014, 14(17): 3206-3212. |
3 | Masson E, Maciejewski E M, Wheelhouse K M P, et al. Fixed bed continuous hydrogenations in trickle flow mode: a pharmaceutical industry perspective[J]. Organic Process Research & Development, 2022, 26(8): 2190-2223. |
4 | Zhao C X, He L Z, Qiao S Z, et al. Nanoparticle synthesis in microreactors[J]. Chemical Engineering Science, 2011, 66(7): 1463-1479. |
5 | Song Y, Shang M J, Zhang H, et al. Process characteristics and rheological properties of free radical polymerization in microreactors[J]. Industrial & Engineering Chemistry Research, 2018, 57(32): 10922-10934. |
6 | Hessel V, Löwe H. Organic synthesis with microstructured reactors[J]. Chemical Engineering & Technology, 2005, 28(3): 267-284. |
7 | Kunte A, Raghu A K, Kaisare N S. A spiral microreactor for improved stability and performance for catalytic combustion of propane[J]. Chemical Engineering Science, 2018, 187: 87-97. |
8 | Schneider M A, Stoessel F. Determination of the kinetic parameters of fast exothermal reactions using a novel microreactor-based calorimeter[J]. Chemical Engineering Journal, 2005, 115(1/2): 73-83. |
9 | 程荡, 陈芬儿. 连续流微反应技术在药物合成中的应用研究进展[J]. 化工进展, 2019, 38(1): 556-575. |
Cheng D, Chen F E. Progress in applied research of the continuous-flow micro-reaction technology in drug synthesis[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 556-575. | |
10 | Yan Z F, Tian J X, Du C C, et al. Reaction kinetics determination based on microfluidic technology[J]. Chinese Journal of Chemical Engineering, 2022, 41: 49-72. |
11 | 冯海波, 袁玫, 张玮, 等. T型微反应器中气液磺化制备十二烷基苯磺酸的研究[J]. 现代化工, 2022, 42(11): 117-121. |
Feng H B, Yuan M, Zhang W, et al. Preparation of dodecylbenzene sulfonic acid via gas-liquid sulfonation in a T-shaped microreactor[J]. Modern Chemical Industry, 2022, 42(11): 117-121. | |
12 | 章承浩, 罗京, 张吉松. 微反应器内基于氮氧自由基催化剂连续氧气/空气氧化反应的研究进展[J]. 化工学报, 2023, 74(2): 511-524. |
Zhang C H, Luo J, Zhang J S. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors[J]. CIESC Journal, 2023, 74(2): 511-524. | |
13 | 侯跃辉, 刘璇, 廉应江, 等. 超声微反应器内三硝基间苯三酚合成工艺研究[J]. 化工学报, 2022, 73(8): 3597-3607. |
Hou Y H, Liu X, Lian Y J, et al. Synthesis process of trinitrophloroglucinol in an ultrasonic microreactor[J]. CIESC Journal, 2022, 73(8): 3597-3607. | |
14 | 曾丽媛, 毛明珍, 王伦, 等. 微反应技术在氟化反应中的应用[J]. 精细化工, 2019, 36(4): 549-558, 587. |
Zeng L Y, Mao M Z, Wang L, et al. Application of microreaction technology in fluorination[J]. Fine Chemicals, 2019, 36(4): 549-558, 587. | |
15 | 武文娟, 石博文. 非均相合成反应器研究及应用进展[J]. 山东化工, 2023, 52(11): 113-116. |
Wu W J, Shi B W. Research and application progress of heterogeneous synthesis reactor[J]. Shandong Chemical Industry, 2023, 52(11): 113-116. | |
16 | Elliott L D, Berry M, Harji B, et al. A small-footprint, high-capacity flow reactor for UV photochemical synthesis on the kilogram scale[J]. Organic Process Research & Development, 2016, 20(10): 1806-1811. |
17 | Kumar V, Paraschivoiu M, Nigam K D P. Single-phase fluid flow and mixing in microchannels[J]. Chemical Engineering Science, 2011, 66(7): 1329-1373. |
18 | Holvey C P, Roberge D M, Gottsponer M, et al. Pressure drop and mixing in single phase microreactors: simplified designs of micromixers[J]. Chemical Engineering and Processing: Process Intensification, 2011, 50(10): 1069-1075. |
19 | Dean W R. XVI.Note on the motion of fluid in a curved pipe[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1927, 4(20): 208-223. |
20 | Dean W R. LXXII.The stream-line motion of fluid in a curved pipe(Second paper)[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1928, 5(30): 673-695. |
21 | Mansour M, Khot P, Thévenin D, et al. Optimal Reynolds number for liquid-liquid mixing in helical pipes[J]. Chemical Engineering Science, 2020, 214: 114522. |
22 | Singh J, Kockmann N, Nigam K D P. Novel three-dimensional microfluidic device for process intensification[J]. Chemical Engineering and Processing: Process Intensification, 2014, 86: 78-89. |
23 | 张生勇, 姜茹, 何炜, 等. 手性药物不对称催化合成:机遇与挑战并存[J]. 空军军医大学学报, 2023, 44(12): 1133-1141. |
Zhang S Y, Jiang R, He W, et al. Asymmetric catalytic synthesis of chiral drugs: opportunities and challenges[J]. Journal of Air Force Medical University, 2023, 44(12): 1133-1141. | |
24 | Mak X Y, Laurino P, Seeberger P H. Asymmetric reactions in continuous flow[J]. Beilstein Journal of Organic Chemistry, 2009, 5: 19. |
25 | Rossi S, Benaglia M, Puglisi A, et al. Continuous-flow stereoselective synthesis in microreactors: nucleophilic additions to nitrostyrenes organocatalyzed by a chiral bifunctional catalyst[J]. Journal of Flow Chemistry, 2015, 5(1): 17-21. |
26 | Kawasuji T, Johns B A, Yoshida H, et al. Carbamoyl pyridone HIV-1 integrase inhibitors(2): Bi- and tricyclic derivatives result in superior antiviral and pharmacokinetic profiles[J]. Journal of Medicinal Chemistry, 2013, 56(3): 1124-1135. |
27 | Wang X H, Chen S, Zhao C K, et al. Preparation of dolutegravir intermediate diastereomer[J]. Journal of Heterocyclic Chemistry, 2019, 56(7): 2063-2067. |
28 | Sankareswaran S, Mannam M, Chakka V, et al. Identification and control of critical process impurities: an improved process for the preparation of dolutegravir sodium[J]. Organic Process Research & Development, 2016, 20(8): 1461-1468. |
29 | Ziegler R E, Desai B K, Jee J A, et al. 7-Step flow synthesis of the HIV integrase inhibitor dolutegravir[J]. Angewandte Chemie International Edition, 2018, 57(24): 7181-7185. |
30 | Xue X, Jiang R K, Xie C M, et al. Mechanism and kinetic study for the intensification of two-step synthesis of a dolutegravir intermediate in microreactor[J]. AIChE Journal, 2022, 68(11): e17820. |
31 | 鄢明, 蒋耀忠, 宓爱巧. 甲基醚脱甲基反应[J]. 化学试剂, 1996, 18(3): 151-156. |
Yan M, Jiang Y Z, Mi A Q. Demethylating reaction of methyl ethers[J]. Chemical Reagents, 1996, 18(3): 151-156. | |
32 | Srinivasachary K, Subbareddy D, Ramadas C, et al. Practical and efficient route to dolutegravir sodium via one-pot synthesis of key intermediate with controlled formation of impurities[J]. Russian Journal of Organic Chemistry, 2022, 58(4): 526-535. |
33 | Xue X, Xie C M, Qian G Z, et al. Control over selectivity for demethylation in dolutegravir synthesis in microreactors: kinetics and mechanisms[J]. Chemical Engineering Science, 2024, 284: 119453. |
34 | Knoepfel T, Nimsgern P, Jacquier S, et al. Target-based identification and optimization of 5-indazol-5-yl pyridones as toll-like receptor 7 and 8 antagonists using a biochemical TLR8 antagonist competition assay[J]. Journal of Medicinal Chemistry, 2020, 63(15): 8276-8295. |
35 | Lehmann H, Ruppen T, Knoepfel T. Scale-up of diazonium salts and azides in a three-step continuous flow sequence[J]. Organic Process Research & Development, 2022, 26(4): 1308-1317. |
36 | Kulkarni A A. Continuous flow nitration in miniaturized devices[J]. Beilstein Journal of Organic Chemistry, 2014, 10: 405-424. |
37 | Saada R, Patel D, Saha B. Causes and consequences of thermal runaway incidents—will they ever be avoided?[J]. Process Safety and Environmental Protection, 2015, 97: 109-115. |
38 | Jin N, Song Y B, Yue J, et al. Heterogeneous nitration of nitrobenzene in microreactors: process optimization and modelling[J]. Chemical Engineering Science, 2023, 281: 119198. |
39 | 田会宁, 王蕊霞, 智怡菱, 等. [2+2]环加成反应及其在天然药物合成中的应用研究进展[J]. 甘肃中医药大学学报, 2022, 39(3): 83-97. |
Tian H N, Wang R X, Zhi Y L, et al. Research advance of [2+2] cycloaddition reaction and its application in the synthesis of natural medicine[J]. Journal of Gansu University of Chinese Medicine, 2022, 39(3): 83-97. | |
40 | Corcoran E B, Lévesque F, McMullen J P, et al. Studies toward the scaling of gas-liquid photocycloadditions[J]. ChemPhotoChem, 2018, 2(10): 931-937. |
41 | Xiang N, Yi H, Chen K, et al. Investigation of the maskless lithography technique for the rapid and cost-effective prototyping of microfluidic devices in laboratories[J]. Journal of Micromechanics and Microengineering, 2013, 23: 025016. |
42 | Focke M, Kosse D, Müller C, et al. Lab-on-a-foil: microfluidics on thin and flexible films[J]. Lab on a Chip, 2010, 10(11): 1365-1386. |
43 | Manz A, Fettinger J C, Verpoorte E, et al. Micromachining of monocrystalline silicon and glass for chemical analysis systems A look into next century's technology or just a fashionable craze?[J]. TrAC Trends in Analytical Chemistry, 1991, 10(5): 144-149. |
44 | Wiles C, Watts P. Micro Reaction Technology in Organic Synthesis[M]. Boca Raton: CRC Press, 2011. |
45 | 李济超, 季璨, 吕明明, 等. 微通道内单柱绕流特性的Micro-PIV实验研究[J]. 化工学报, 2020, 71(4): 1597-1608. |
Li J C, Ji C, Lyu M M, et al. Experimental study on characteristics of flow around single cylinder in microchannel based on Micro-PIV[J]. CIESC Journal, 2020, 71(4): 1597-1608. | |
46 | Bedore M W, Zaborenko N, Jensen K F, et al. Aminolysis of epoxides in a microreactor system: a continuous flow approach to β-amino alcohols[J]. Organic Process Research & Development, 2010, 14(2): 432-440. |
47 | Newman S G, Gu L, Lesniak C, et al. Rapid Wolff–Kishner reductions in a silicon carbide microreactor[J]. Green Chemistry, 2014, 16(1): 176-180. |
48 | Goralczyk A, Mayoussi F, Sanjaya M, et al. On-chip chemical synthesis using one-step 3D printed polyperfluoropolyether[J]. Chemie-Ingenieur-Technik, 2022, 94(7): 975-982. |
49 | Yao X J, Zhang Y, Du L Y, et al. Review of the applications of microreactors[J]. Renewable and Sustainable Energy Reviews, 2015, 47: 519-539. |
50 | 李光晓, 刘塞尔, 苏远海. 微尺度内液-液传质及反应过程强化的研究进展[J]. 化工学报, 2021, 72(1): 452-467. |
Li G X, Liu S E, Su Y H. Research progress on micro-scale internal liquid-liquid mass transfer and reaction process enhancement[J]. CIESC Journal, 2021, 72(1): 452-467. | |
51 | Ahmad Ansari M, Kim K Y, Anwar K, et al. A novel passive micromixer based on unbalanced splits and collisions of fluid streams[J]. Journal of Micromechanics and Microengineering, 2010, 20(5): 055007. |
52 | Zhu G P, Nguyen N T. Rapid magnetofluidic mixing in a uniform magnetic field[J]. Lab on a Chip, 2012, 12(22): 4772-4780. |
53 | Huang M Z, Yang R J, Tai C H, et al. Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel[J]. Biomedical Microdevices, 2006, 8(4): 309-315. |
54 | Phan H V, Coşkun M B, Şeşen M, et al. Vibrating membrane with discontinuities for rapid and efficient microfluidic mixing[J]. Lab on a Chip, 2015, 15(21): 4206-4216. |
55 | Le N H A, Deng H, Devendran C, et al. Ultrafast star-shaped acoustic micromixer for high throughput nanoparticle synthesis[J]. Lab on a Chip, 2020, 20(3): 582-591. |
56 | Hessel V, Kralisch D, Kockmann N, et al. Novel process windows for enabling, accelerating, and uplifting flow chemistry[J]. ChemSusChem, 2013, 6(5): 746-789. |
57 | Daghighi Y, Li D Q. Numerical study of a novel induced-charge electrokinetic micro-mixer[J]. Analytica Chimica Acta, 2013, 763: 28-37. |
58 | Bezagu M, Arseniyadis S, Cossy J, et al. A fast and switchable microfluidic mixer based on ultrasound-induced vaporization of perfluorocarbon[J]. Lab on a Chip, 2015, 15(9): 2025-2029. |
59 | Li Z L, Kim S J. Pulsatile micromixing using water-head-driven microfluidic oscillators[J]. Chemical Engineering Journal, 2017, 313: 1364-1369. |
60 | Nie X Y, Zhu C Y, Fu T T, et al. Mass transfer intensification and mechanism analysis of gas–liquid two-phase flow in the microchannel embedding triangular obstacles[J]. Chinese Journal of Chemical Engineering, 2022, 51: 100-108. |
61 | Rao Y S, Babu B H, Aminual I, et al. An improved preparation of (R)-3-aminobutanol, a key intermediate for the synthesis of dolutegravir sodium[J]. Letters in Drug Design & Discovery, 2017, 14(12): 1371-1375. |
62 | 荆晓荣. 镇静药地西泮的合成工艺研究[D]. 太原: 中北大学, 2023. |
Jing X R. Sedative diazepam synthesis process research[D]. Taiyuan: North University of China, 2023. | |
63 | Ewan H S, Iyer K, Hyun S H, et al. Multistep flow synthesis of diazepam guided by droplet-accelerated reaction screening with mechanistic insights from rapid mass spectrometry analysis[J]. Organic Process Research & Development, 2017, 21(10): 1566-1570. |
64 | Nicholas R J, McGuire M A, Hyun S H, et al. Development of an efficient, high purity continuous flow synthesis of diazepam[J]. Frontiers in Chemical Engineering, 2022, 4: 877498. |
65 | Nishiguchi S, Izumi T, Kouno T, et al. Synthesis of esomeprazole and related proton pump inhibitors through iron-catalyzed enantioselective sulfoxidation[J]. ACS Catalysis, 2018, 8(10): 9738-9743. |
66 | Gao T X, Zhao J N, Sun H N, et al. Continuous flow synthesis of esomeprazole via asymmetric sulfoxidation[J]. Organic Process Research & Development, 2023. |
67 | Su Y H, Chen G W, Zhao Y C, et al. Intensification of liquid-liquid two-phase mass transfer by gas agitation in a microchannel[J]. AIChE Journal, 2009, 55: 1948-1958. |
68 | Zhang J S, Wang K, Lin X Y, et al. Intensification of fast exothermic reaction by gas agitation in a microchemical system[J]. AIChE Journal, 2014, 60(7): 2724-2730. |
69 | Yun L, Zhao J N, Tang X F, et al. Selective oxidation of benzylic sp3 C—H bonds using molecular oxygen in a continuous-flow microreactor[J]. Organic Process Research & Development, 2021, 25(7): 1612-1618. |
70 | Sharma B M, Yim S J, Nikam A, et al. One-flow upscaling neutralization of an organophosphonate-derived pesticide/nerve agent simulant to value-added chemicals in a novel Teflon microreactor platform[J]. Reaction Chemistry & Engineering, 2021, 6(8): 1454-1461. |
71 | Kasaplar P, Rodríguez-Escrich C, Pericàs M A. Continuous flow, highly enantioselective Michael additions catalyzed by a PS-supported squaramide[J]. Organic Letters, 2013, 15(14): 3498-3501. |
72 | Zhang M, Ettelaie R, Yan T, et al. Ionic liquid droplet microreactor for catalysis reactions not at equilibrium[J]. Journal of the American Chemical Society, 2017, 139(48): 17387-17396. |
73 | van der Helm M P, Bracco P, Busch H, et al. Hydroxynitrile lyases covalently immobilized in continuous flow microreactors[J]. Catalysis Science & Technology, 2019, 9(5): 1189-1200. |
74 | Garrett C, Prasad K. The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions[J]. Advanced Synthesis & Catalysis, 2004, 346(8): 889-900. |
75 | Lamblin M, Nassar-Hardy L, Hierso J C, et al. Recyclable heterogeneous palladium catalysts in pure water: sustainable developments in Suzuki, Heck, Sonogashira and Tsuji-Trost reactions[J]. Advanced Synthesis & Catalysis, 2010, 352(1): 33-79. |
76 | Miao T, Wang L. Immobilization of copper in organic–inorganic hybrid materials: a highly efficient and reusable catalyst for the Ullmann diaryl etherification[J]. Tetrahedron Letters, 2007, 48(1): 95-99. |
77 | Ma X M, Zhou Y X, Zhang J C, et al. Solvent-free Heck reaction catalyzed by a recyclable Pd catalyst supported on SBA-15 via an ionic liquid[J]. Green Chemistry, 2008, 10(1): 59-66. |
78 | Trzeciak A M, Mieczyńska E, Ziółkowski J J, et al. Palladium(0) nanoparticles encapsulated in diamine-modified glycidyl methacrylatepolymer (GMA-CHDA) applied as catalyst of Suzuki-Miyaura cross-coupling reaction[J]. New Journal of Chemistry, 2008, 32(7): 1124-1130. |
79 | Andrews S, Stepan A, Tanaka H, et al. Heterogeneous or homogeneous? A case study involving palladium-containing perovskites in the Suzuki reaction[J]. Advanced Synthesis & Catalysis, 2005, 347(5): 647-654. |
80 | Sang L, Feng X D, Tu J C, et al. Investigation of external mass transfer in micropacked bed reactors[J]. Chemical Engineering Journal, 2020, 393: 124793. |
81 | Su Y H, Zhao Y C, Chen G W, et al. Liquid-liquid two-phase flow and mass transfer characteristics in packed microchannels[J]. Chemical Engineering Science, 2010, 65: 3947-3956. |
82 | Mathew M P, Tan E, Saeui C T, et al. Metabolic glycoengineering sensitizes drug-resistant pancreatic cancer cells to tyrosine kinase inhibitors erlotinib and gefitinib[J]. Bioorganic & Medicinal Chemistry Letters, 2015, 25(6): 1223-1227. |
83 | Jin H, Cai Q, Liu P W, et al. Multistep continuous flow synthesis of Erlotinib[J]. Chinese Chemical Letters, 2024, 35(4): 108721. |
84 | Van Le Doan T, Stavárek P, de Bellefon C. A method to identify best available technologies (BAT) for hydrogenation reactors in the pharmaceutical industry[J]. Journal of Flow Chemistry, 2012, 2(3): 77-82. |
85 | Fernandez-Puertas E, Robinson A J, Robinson H, et al. Evaluation and screening of spherical Pd/C for use as a catalyst in pharmaceutical-scale continuous hydrogenations[J]. Organic Process Research & Development, 2020, 24(10): 2147-2156. |
86 | Carey J S, Laffan D, Thomson C, et al. Analysis of the reactions used for the preparation of drug candidate molecules[J]. Organic & Biomolecular Chemistry, 2006, 4(12): 2337-2347. |
87 | Cole K P, Reizman B J, Hess M, et al. Small-volume continuous manufacturing of merestinib(1): Process development and demonstration[J]. Organic Process Research & Development, 2019, 23(5): 858-869. |
88 | Heldal J A, Moulton K J, Fronkel E N. Fixed- bed continuous hydrogenation of soybean oil with palladium—polymer supported catalysts[J]. Journal of the American Oil Chemists' Society, 1989, 66(7): 979-982. |
89 | Ciriminna R, Pagliaro M. Green chemistry in the fine chemicals and pharmaceutical industries[J]. Organic Process Research & Development, 2013, 17(12): 1479-1484. |
90 | Fannes C, Verbruggen S, Janssen B, et al. Influence of solvents and additives on the pyrophoricity of palladium on carbon catalyst after hydrogenation[J]. Organic Process Research & Development, 2021, 25(11): 2438-2441. |
91 | 娄锋炎, 尹佳滨, 段笑南, 等. 连续微反应加氢技术在脱保护反应中的应用[J]. 化工学报, 2021, 72(2): 761-771. |
Lou F Y, Yin J B, Duan X N, et al. Application of continuous micro-reaction hydrogenation technology in deprotection reaction[J]. CIESC Journal, 2021, 72(2): 761-771. | |
92 | Gutmann B, Cantillo D, Kappe C O. Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients[J]. Angewandte Chemie International Edition, 2015, 54(23): 6688-6728. |
93 | Johnson M D, May S A, Calvin J R, et al. Development and scale-up of a continuous, high-pressure, asymmetric hydrogenation reaction, workup, and isolation[J]. Organic Process Research & Development, 2012, 16(5): 1017-1038. |
94 | Cecilia C R, Jennifer R B, Peter J C, et al. Recent Developments in the Use of Flow Hydrogenation in the Field of Medicinal Chemistry [M]. London: In Tech, 2017: 13. |
95 | Qin B J, Jiang X K, Lu H, et al. Diarylaniline derivatives as a distinct class of HIV-1 non-nucleoside reverse transcriptase inhibitors[J]. Journal of Medicinal Chemistry, 2010, 53(13): 4906-4916. |
96 | Tian X T, Qin B J, Wu Z Y, et al. Design, synthesis, and evaluation of diarylpyridines and diarylanilines as potent non-nucleoside HIV-1 reverse transcriptase inhibitors[J]. Journal of Medicinal Chemistry, 2010, 53(23): 8287-8297. |
97 | Jones R, Gödörházy L, Szalay D, et al. A novel method for high-throughput reduction of compounds through automated sequential injection into a continuous-flow microfluidic reactor[J]. QSAR & Combinatorial Science, 2005, 24(6): 722-727. |
98 | Brandi F, Bäumel M, Molinari V, et al. Nickel on nitrogen-doped carbon pellets for continuous-flow hydrogenation of biomass-derived compounds in water[J]. Green Chemistry, 2020, 22(9): 2755-2766. |
99 | Cova C M, Zuliani A, Manno R, et al. Scrap waste automotive converters as efficient catalysts for the continuous-flow hydrogenations of biomass derived chemicals[J]. Green Chemistry, 2020, 22(4): 1414-1423. |
100 | Taghizadeh M, Akhoundzadeh H, Rezayan A, et al. Excellent catalytic performance of 3D-mesoporous KIT-6 supported Cu and Ce nanoparticles in methanol steam reforming[J]. International Journal of Hydrogen Energy, 2018, 43(24): 10926-10937. |
101 | Chai K J, Shen R Q, Qi T T, et al. Continuous-flow hydrogenation of nitroaromatics in microreactor with mesoporous Pd@SBA-15[J]. Processes, 2023, 11(4): 1074. |
102 | Tsubogo T, Oyamada H, Kobayashi S. Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts[J]. Nature, 2015, 520(7547): 329-332. |
103 | Jensen K F. Microreaction engineering—is small better?[J]. Chemical Engineering Science, 2001, 56(2): 293-303. |
104 | Losey M W, Schmidt M A, Jensen K F. Microfabricated multiphase packed-bed reactors: characterization of mass transfer and reactions[J]. Industrial & Engineering Chemistry Research, 2001, 40(12): 2555-2562. |
105 | Ötvös S B, Kappe C O. Continuous flow asymmetric synthesis of chiral active pharmaceutical ingredients and their advanced intermediates[J]. Green Chemistry: an International Journal and Green Chemistry Resource: GC, 2021, 23(17): 6117-6138. |
106 | Liu M, Zhu X, Liao Q, et al. Stacked catalytic membrane microreactor for nitrobenzene hydrogenation[J]. Industrial & Engineering Chemistry Research, 2020, 59(20): 9469-9477. |
107 | Dong T T, Liu M Y, Li X N, et al. Catalytic oxidation of crotonaldehyde to crotonic acid in a gas-liquid-solid mini-fluidized bed[J]. Powder Technology, 2019, 352: 32-41. |
108 | Khrustalev D, Yedrissov A, Khrustaleva A, et al. Synthesis of anti-tuberculosis drugs in a microwave flow reactor[J]. Materials Today: Proceedings, 2023, 81: 1186-1191. |
109 | Blagden N, de Matas M, Gavan P T, et al. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates[J]. Advanced Drug Delivery Reviews, 2007, 59(7): 617-630. |
110 | Jinno J I, Kamada N, Miyake M, et al. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs[J]. Journal of Controlled Release, 2006, 111(1/2): 56-64. |
111 | 盛磊, 李培钰, 牛宇超, 等. 微尺度过程强化的结晶颗粒制备研究进展[J]. 化工学报, 2021, 72(1): 143-157. |
Sheng L, Li P Y, Niu Y C, et al. Progresses in the preparation of micro-scale process-enhanced crystalline particles[J]. CIESC Journal, 2021, 72(1): 143-157. | |
112 | Araki K, Yoshizumi M, Kimura S, et al. Application of a microreactor to pharmaceutical manufacturing: preparation of amorphous curcumin nanoparticles and controlling the crystallinity of curcumin nanoparticles by ultrasonic treatment[J]. AAPS PharmSciTech, 2019, 21(1): 17. |
[1] | Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier [J]. CIESC Journal, 2024, 75(4): 1198-1208. |
[2] | Anran XU, Kai LIU, Na WANG, Zhenyu ZHAO, Hong LI, Xin GAO. Strong wave-absorbing catalyst cooperates with microwave energy to enhance fructose dehydration to produce 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1565-1577. |
[3] | Yuwei YANG, Min LI, Zhiying YAO, Qinlin SUN, Yang LIU, Dan GE, Bingbing SUN. Application and prospect of organoids-on-chip in the study of nano-drug delivery systems [J]. CIESC Journal, 2024, 75(4): 1209-1221. |
[4] | Shaoyang MA, Hanzhuo XU, Liangliang ZHANG, Baochang SUN, Haikui ZOU, Yong LUO, Guangwen CHU. Research progress of reactors for liquid-liquid heterogeneous system [J]. CIESC Journal, 2024, 75(3): 727-742. |
[5] | Jiaqi WANG, Haoqi WEI, Ajing GOU, Jiaxing LIU, Xinlin ZHOU, Kun GE. Study on the formation mechanism of CO2 hydrate under the action of nanoparticles [J]. CIESC Journal, 2024, 75(3): 956-966. |
[6] | Rao CHEN, Xin ZHAO, Daixin CHEN, Shengkun JIANG, Yingjiang LIAN, Jinbo WANG, Mei YANG, Guangwen CHEN. Continuous dinitration of toluene to dinitrotoluene in a microreactor [J]. CIESC Journal, 2024, 75(3): 867-876. |
[7] | Wenkai CHENG, Jinyu YAN, Jiajun WANG, Lianfang FENG. Research progress of horizontal kneading reactor and its application in polymerization industry [J]. CIESC Journal, 2024, 75(3): 768-781. |
[8] | Zhaoxiang ZHANG, Maokun CAI, Zhiying REN, Xiaohong JIA, Fei GUO. Numerical analysis of the effect of temperature and its fluctuations on the vulcanization process of rubber seals [J]. CIESC Journal, 2024, 75(2): 715-726. |
[9] | Xueyun WANG, Xiaobing YU, Wanwang PENG, Yansong SHEN. Numerical study on combustion zone behaviors of a slagging gasifier [J]. CIESC Journal, 2024, 75(2): 659-674. |
[10] | Yizhou CUI, Chengxiang LI, Linxiao ZHAI, Shuyu LIU, Xiaogang SHI, Jinsen GAO, Xingying LAN. Comparative study on the flow and mass transfer characteristics of sub-millimeter bubbles and conventional bubbles in gas-liquid two-phase flow [J]. CIESC Journal, 2024, 75(1): 197-210. |
[11] | Junnan WANG, Chengxiang HE, Zhongdong WANG, Chunying ZHU, Youguang MA, Taotao FU. Numerical simulation of homogeneous mixing in T-junction micromixers [J]. CIESC Journal, 2024, 75(1): 242-254. |
[12] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[13] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[14] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[15] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||