CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1565-1577.DOI: 10.11949/0438-1157.20240105
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Anran XU1(), Kai LIU1, Na WANG1, Zhenyu ZHAO1(), Hong LI1, Xin GAO1,2()
Received:
2024-01-23
Revised:
2024-03-20
Online:
2024-06-06
Published:
2024-04-25
Contact:
Zhenyu ZHAO, Xin GAO
徐安冉1(), 刘凯1, 王娜1, 赵振宇1(), 李洪1, 高鑫1,2()
通讯作者:
赵振宇,高鑫
作者简介:
徐安冉(1999—),男,硕士研究生,xuanran99@tju.edu.cn
基金资助:
CLC Number:
Anran XU, Kai LIU, Na WANG, Zhenyu ZHAO, Hong LI, Xin GAO. Strong wave-absorbing catalyst cooperates with microwave energy to enhance fructose dehydration to produce 5-hydroxymethylfurfural[J]. CIESC Journal, 2024, 75(4): 1565-1577.
徐安冉, 刘凯, 王娜, 赵振宇, 李洪, 高鑫. 强吸波催化剂协同微波能强化果糖脱水制5-羟甲基糠醛[J]. 化工学报, 2024, 75(4): 1565-1577.
Add to citation manager EndNote|Ris|BibTeX
样品 | ε′ | ε″ | tanδ | 频率/GHz |
---|---|---|---|---|
MHCS-800-SO3H | 39 | 213 | 5.46 | 2.45 |
SCS-800-SO3H | 40 | 50 | 1.25 | 2.45 |
SCS-SO3H | 3 | 0.08 | 0.03 | 2.45 |
Table 1 Dielectric parameters of catalysts with different microwave absorbing properties
样品 | ε′ | ε″ | tanδ | 频率/GHz |
---|---|---|---|---|
MHCS-800-SO3H | 39 | 213 | 5.46 | 2.45 |
SCS-800-SO3H | 40 | 50 | 1.25 | 2.45 |
SCS-SO3H | 3 | 0.08 | 0.03 | 2.45 |
样 品 | 磺化前/% (质量分数) | 磺化后/% (质量分数) | ||
---|---|---|---|---|
Fe含量 | Co含量 | Fe含量 | Co含量 | |
MHCS-800-SO3H | 10.60 | 5.93 | 5.39 | 2.98 |
Table 2 Fe and Co contents of MHCS-800-SO3H before and after sulfonation
样 品 | 磺化前/% (质量分数) | 磺化后/% (质量分数) | ||
---|---|---|---|---|
Fe含量 | Co含量 | Fe含量 | Co含量 | |
MHCS-800-SO3H | 10.60 | 5.93 | 5.39 | 2.98 |
样 品 | 总酸度/(μmol/g) | Brønsted酸度/(μmol/g) | Lewis酸度/(μmol/g) |
---|---|---|---|
MHCS-800-SO3H | 74.51 | 9.67 | 64.84 |
SCS-800-SO3H | 80.96 | 11.64 | 69.32 |
SCS-SO3H | 80.84 | 13.93 | 66.91 |
Table 3 Acidic properties of catalysts with different microwave absorbing properties
样 品 | 总酸度/(μmol/g) | Brønsted酸度/(μmol/g) | Lewis酸度/(μmol/g) |
---|---|---|---|
MHCS-800-SO3H | 74.51 | 9.67 | 64.84 |
SCS-800-SO3H | 80.96 | 11.64 | 69.32 |
SCS-SO3H | 80.84 | 13.93 | 66.91 |
1 | Guest G, Cherubini F, Strømman A H. The role of forest residues in the accounting for the global warming potential of bioenergy[J]. GCB Bioenergy, 2013, 5(4): 459-466. |
2 | Liu Y P, Pan C, Qiu X M, et al. Oxidative esterification of 5-hydroxymethylfurfural to dimethyl 2,5-furandicarboxylate over Au-supported poly(ionic liquid)s[J]. Fuel, 2024, 359: 130354. |
3 | Yabushita M, Kobayashi H, Fukuoka A. Catalytic transformation of cellulose into platform chemicals[J]. Applied Catalysis B: Environmental, 2014, 145: 1-9. |
4 | Bozell J J, Petersen G R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's “Top 10” revisited[J]. Green Chemistry, 2010, 12(4): 539-554. |
5 | Zhao D Y, Su T, Len C, et al. Recent advances in the oxidative esterification of 5-hydroxymethylfurfural to furan-2,5-dimethylcarboxylate[J]. Green Chemistry, 2022, 24(18): 6782-6789. |
6 | Cao Z, Fan Z X, Chen Y, et al. Efficient preparation of 5-hydroxymethylfurfural from cellulose in a biphasic system over hafnyl phosphates[J]. Applied Catalysis B: Environmental, 2019, 244: 170-177. |
7 | Ma X Y, Ren X L, Guo X D, et al. Multifunctional iron-based metal-organic framework as biodegradable nanozyme for microwave enhancing dynamic therapy[J]. Biomaterials, 2019, 214: 119223. |
8 | Xiao S N, Zhou C, Ye X Y, et al. Solid-phase microwave reduction of WO3 by GO for enhanced synergistic photo-Fenton catalytic degradation of bisphenol A[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 32604-32614. |
9 | Zhao Z Y, Li H, Zhao K, et al. Microwave-assisted synthesis of MOFs: rational design via numerical simulation[J]. Chemical Engineering Journal, 2022, 428: 131006. |
10 | Thostenson E T, Chou T W. Microwave processing: fundamentals and applications[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(9): 1055-1071. |
11 | Ji T, Liu C, Lu X H, et al. Coupled chemical and thermal drivers in microwaves toward ultrafast HMF oxidation to FDCA[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11493-11501. |
12 | Li H, Zhao Z Y, Xiouras C, et al. Fundamentals and applications of microwave heating to chemicals separation processes[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109316. |
13 | De Martino L, Caputo L, Amato G, et al. Postharvest microwave drying of basil (Ocimum basilicum L.): the influence of treatments on the quality of dried products[J]. Foods, 2022, 11(7): 1029. |
14 | Ahmed F E, Lalia B S, Hashaikeh R, et al. Alternative heating techniques in membrane distillation: a review[J]. Desalination, 2020, 496: 114713. |
15 | Gronnow M J, White R J, Clark J H, et al. Energy efficiency in chemical reactions: a comparative study of different reaction techniques[J]. Organic Process Research & Development, 2005, 9(4): 516-518. |
16 | Ji T, Tu R, Mu L W, et al. Enhancing energy efficiency in saccharide-HMF conversion with core/shell structured microwave responsive catalysts[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 4352-4358. |
17 | Santos E J G, Kaxiras E. Electric-field dependence of the effective dielectric constant in graphene[J]. Nano Letters, 2013, 13(3): 898-902. |
18 | Liang J Y, Wang C C, Lu S Y. Glucose-derived nitrogen-doped hierarchical hollow nest-like carbon nanostructures from a novel template-free method as an outstanding electrode material for supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(48): 24453-24462. |
19 | Liu F, Cheng Y, Tan J C, et al. Carbon nanomaterials with hollow structures: a mini-review[J]. Frontiers in Chemistry, 2021, 9: 668336. |
20 | Cui L L, Xu H P, An Y R, et al. N, S co-doped lignin-based carbon microsphere functionalized graphene hydrogel with “sphere-in-layer” interconnection as electrode materials for supercapacitor and molecularly imprinted electrochemical sensors[J]. Advanced Powder Technology, 2022, 33(6): 103571. |
21 | Qin M, Zhang L M, Wu H J. Dielectric loss mechanism in electromagnetic wave absorbing materials[J]. Advanced Science, 2022, 9(10): 2105553. |
22 | Metaxas A C, Meredith R J. Industrial Microwave Heating[M]. London: The Institution of Engineering and Technology, 1983: 73. |
23 | Xu J J, Bian C, Sun J Y, et al. Heterostructure tailoring of carbon nanotubes grown on prismatic NiCo clusters for high-efficiency electromagnetic absorption[J]. Journal of Colloid and Interface Science, 2023, 634: 185-194. |
24 | Ren L G, Wang Y Q, Zhang X, et al. Efficient microwave absorption achieved through in situ construction of core-shell CoFe2O4@mesoporous carbon hollow spheres[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(3): 504-514. |
25 | Wang B L, Fu Y G, Li J, et al. Carbon-encapsulated Co7Fe3 nanocomposites with high intensity and ultra-wideband microwave absorption[J]. Carbon, 2023, 202: 101-111. |
26 | Cheng Y, Ma Y Z, Dang Z E, et al. The efficient absorption of electromagnetic waves by tunable N-doped multi-cavity mesoporous carbon microspheres[J]. Carbon, 2023, 201: 1115-1125. |
27 | Fan B X, Xing L, He Q M, et al. Selective synthesis and defects steering superior microwave absorption capabilities of hollow graphitic carbon nitride micro-polyhedrons[J]. Chemical Engineering Journal, 2022, 435: 135086. |
28 | Lu X K, Li X, Zhu W J, et al. Construction of embedded heterostructures in biomass-derived carbon frameworks for enhancing electromagnetic wave absorption[J]. Carbon, 2022, 191: 600-609. |
29 | Zhang X, Yan F, Zhang S, et al. Hollow N-doped carbon polyhedron containing CoNi alloy nanoparticles embedded within few-layer N-doped graphene as high-performance electromagnetic wave absorbing material[J]. ACS Applied Materials & Interfaces, 2018, 10(29): 24920-24929. |
30 | Zhang M, Ling H L, Wang T, et al. An equivalent substitute strategy for constructing 3D ordered porous carbon foams and their electromagnetic attenuation mechanism[J]. Nano-Micro Letters, 2022, 14(1): 157. |
31 | Xie L, Li X F, Deng J, et al. Sustainable and scalable synthesis of monodisperse carbon nanospheres and their derived superstructures[J]. Green Chemistry, 2018, 20(20): 4596-4601. |
32 | Xu H L, Yin X W, Zhu M, et al. Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6332-6341. |
33 | Zhang M N, Song Y, Li W, et al. CO2-assisted synthesis of hierarchically porous carbon as a supercapacitor electrode and dye adsorbent[J]. Inorganic Chemistry Frontiers, 2019, 6(5): 1141-1151. |
34 | Tan R Y, Zhou J T, Yao Z J, et al. Ferrero Rocher® chocolates-like FeCo/C microspheres with adjustable electromagnetic properties for effective microwave absorption[J]. Journal of Alloys and Compounds, 2021, 857: 157568. |
35 | Tuinstra F, Koenig J L. Raman spectrum of graphite[J]. Journal of Chemical Physics, 1970, 53(3): 1126-1130. |
36 | Liu P B, Wang Y, Zhang G Z, et al. Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction[J]. Advanced Functional Materials, 2022, 32(33): 2202588. |
37 | Cheng Y, Zhao H Q, Zhao Y, et al. Structure-switchable mesoporous carbon hollow sphere framework toward sensitive microwave response[J]. Carbon, 2020, 161: 870-879. |
38 | Qi T B H, Yao Z J, Zhou J T, et al. Interfacial polymerization preparation of polyaniline fibers/Co0.2Ni0.4Zn0.4Fe2O4 urchin-like composite with superior microwave absorption performance[J]. Journal of Alloys and Compounds, 2018, 769: 669-677. |
39 | Deshan A D K, Moghaddam L, Atanda L, et al. High conversion of concentrated sugars to 5-hydroxymethylfurfural over a metal-free carbon catalyst: role of glucose-fructose dimers[J]. ACS Omega, 2023, 8(43): 40442-40455. |
40 | Yao Y, Guo Y S, Du W, et al. In situ synthesis of sulfur-doped graphene quantum dots decorated carbon nanoparticles hybrid as metal-free electrocatalyst for oxygen reduction reaction[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(20): 17695-17705. |
41 | Kang S M, Fu J X, Zhang G. From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 340-362. |
42 | Qi X H, Watanabe M, Aida T M, et al. Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating[J]. Green Chemistry, 2008, 10(7): 799-805. |
[1] | Yaqing ZANG, Yijun ZHANG, Jinzhao WANG, Qian WANG, Dianqing LI, Junting FENG, Xue DUAN. Low energy consumption preparation of anhydrous calcium chloride from hydrated calcium chloride based on reaction coupling [J]. CIESC Journal, 2024, 75(4): 1508-1518. |
[2] | Xiao XUE, Minjing SHANG, Yuanhai SU. Advances on continuous-flow synthesis of drugs in microreactors [J]. CIESC Journal, 2024, 75(4): 1439-1454. |
[3] | Fangtao JIANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN, Jing ZHANG. Efficient synthesis of fluoroethylene carbonate via phase transfer catalysis using [bmim][BF4] [J]. CIESC Journal, 2024, 75(4): 1543-1551. |
[4] | Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier [J]. CIESC Journal, 2024, 75(4): 1198-1208. |
[5] | Ting CHENG, Weizhou JIAO, Youzhi LIU. Application and research progress of functional packings in high-gravity rotating packed bed [J]. CIESC Journal, 2024, 75(4): 1414-1428. |
[6] | Shihao LI, Zhenhua WU, Zhanfeng ZHAO, Hong WU, Dong YANG, Jiafu SHI, Zhongyi JIANG. Electron transfer, proton transfer and molecule transfer in chemical processes [J]. CIESC Journal, 2024, 75(3): 1052-1064. |
[7] | Jiaqi WANG, Haoqi WEI, Ajing GOU, Jiaxing LIU, Xinlin ZHOU, Kun GE. Study on the formation mechanism of CO2 hydrate under the action of nanoparticles [J]. CIESC Journal, 2024, 75(3): 956-966. |
[8] | Xingyu GAI, Yuxue YUE, Chunhua YANG, Zilong ZHANG, Tianzi CAI, Haifeng ZHANG, Bolin WANG, Xiaonian LI. Carbon supported Cs- and Cu-based catalysts for gas-phase dehydrochlorination of 1,1,2-trichloroethane [J]. CIESC Journal, 2024, 75(2): 575-583. |
[9] | Zhaoxiang ZHANG, Maokun CAI, Zhiying REN, Xiaohong JIA, Fei GUO. Numerical analysis of the effect of temperature and its fluctuations on the vulcanization process of rubber seals [J]. CIESC Journal, 2024, 75(2): 715-726. |
[10] | Xueyun WANG, Xiaobing YU, Wanwang PENG, Yansong SHEN. Numerical study on combustion zone behaviors of a slagging gasifier [J]. CIESC Journal, 2024, 75(2): 659-674. |
[11] | Qi LIU, Zikang CHEN, Yu PIAO, Peng XIAO, Yafen GE, Yanjun GONG. Zeolite catalysts for catalytic cracking of hydrocarbon to increase light olefins selectivity [J]. CIESC Journal, 2024, 75(1): 120-137. |
[12] | Jialin ZHANG, Dawei XU, Yue GAO, Xingang LI. Performance of soot combustion over CeO2 modified CuO catalysts supported on nickel foams [J]. CIESC Journal, 2024, 75(1): 312-321. |
[13] | Guoyi XIAN, Lifang CHEN, Zhiwen QI. DFT-based study of liquid-phase Beckmann rearrangement mechanism of cyclohexanone oxime [J]. CIESC Journal, 2024, 75(1): 302-311. |
[14] | Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas [J]. CIESC Journal, 2024, 75(1): 377-390. |
[15] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||