CIESC Journal ›› 2024, Vol. 75 ›› Issue (1): 197-210.DOI: 10.11949/0438-1157.20230782
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yizhou CUI(), Chengxiang LI, Linxiao ZHAI, Shuyu LIU, Xiaogang SHI, Jinsen GAO, Xingying LAN()
Received:
2023-08-01
Revised:
2023-09-11
Online:
2024-03-11
Published:
2024-01-25
Contact:
Xingying LAN
崔怡洲(), 李成祥, 翟霖晓, 刘束玉, 石孝刚, 高金森, 蓝兴英()
通讯作者:
蓝兴英
作者简介:
崔怡洲(1994—),男,博士研究生,cuiyizhou_cup@163.com
基金资助:
CLC Number:
Yizhou CUI, Chengxiang LI, Linxiao ZHAI, Shuyu LIU, Xiaogang SHI, Jinsen GAO, Xingying LAN. Comparative study on the flow and mass transfer characteristics of sub-millimeter bubbles and conventional bubbles in gas-liquid two-phase flow[J]. CIESC Journal, 2024, 75(1): 197-210.
崔怡洲, 李成祥, 翟霖晓, 刘束玉, 石孝刚, 高金森, 蓝兴英. 亚毫米气泡和常规尺寸气泡气液两相流流动与传质特性对比[J]. 化工学报, 2024, 75(1): 197-210.
Add to citation manager EndNote|Ris|BibTeX
对比方式 | 实验编号 | 表观气速/(m/s) | 表观液速/(m/s) | 鼓泡塔入口处液相CO2浓度/(mol/L) | d32/mm |
---|---|---|---|---|---|
基准 | Exp.1 | 0.03226 | 0.04247 | 0.0384 | 0.312 |
对比方 | Exp.2 | 0.06717 | 0.04247 | 0 | 7.77 |
对比方 | Exp.3 | 0.03226 | 0.04247 | 0.0384 | 8.12 |
Table 1 Summary of the operating conditions of the mass transfer experiments
对比方式 | 实验编号 | 表观气速/(m/s) | 表观液速/(m/s) | 鼓泡塔入口处液相CO2浓度/(mol/L) | d32/mm |
---|---|---|---|---|---|
基准 | Exp.1 | 0.03226 | 0.04247 | 0.0384 | 0.312 |
对比方 | Exp.2 | 0.06717 | 0.04247 | 0 | 7.77 |
对比方 | Exp.3 | 0.03226 | 0.04247 | 0.0384 | 8.12 |
Fig.16 Comparison of liquid side mass transfer coefficient, gas-liquid interfacial area, and volumetric mass transfer coefficient between sub-millimeter bubbles and millimeter bubbles
1 | Martín M, Galan M A, Cerro R L, et al. Shape oscillating bubbles: hydrodynamics and mass transfer—a review[J]. Bubble Science Engineering and Technology, 2011, 3(2): 48-63. |
2 | International Organization for Standardization. Fine bubble technology—general principles for usage and measurement of fine bubbles(part 1): Terminology: [S]. Switzerland, 2017. |
3 | 邓超, 杨丽, 陈海军, 等. 微纳米气泡发生装置及其应用的研究进展[J]. 石油化工, 2014, 43(10): 1206-1213. |
Deng C, Yang L, Chen H J, et al. Progresses in research and application of micro-nano bubble generating device[J]. Petrochemical Technology, 2014, 43(10): 1206-1213. | |
4 | Parmar R, Majumder S K. Microbubble generation and microbubble-aided transport process intensification—a state-of-the-art report[J]. Chemical Engineering and Processing-Process Intensification, 2013, 64: 79-97. |
5 | Muroyama K, Imai K, Oka Y, et al. Mass transfer properties in a bubble column associated with micro-bubble dispersions[J]. Chemical Engineering Science, 2013, 100: 464-473. |
6 | Muroyama K, Oka Y, Fujiki R. Transport properties of micro-bubbles in a bubble column[J]. Journal of Chemical Engineering of Japan, 2012, 45(9): 666-671. |
7 | Kalaga D V, Ansari M, Turney D E, et al. Scale-up of a downflow bubble column: experimental investigations[J]. Chemical Engineering Journal, 2020, 386: 121447. |
8 | 张志炳. 微界面传质强化技术[M]. 北京: 化学工业出版社, 2020: 379-426. |
Zhang Z B. Microinterfacial Mass Transfer Intensification[M]. Beijing: Chemical Industry Press, 2020: 379-426. | |
9 | Li J J, Song Y C, Yin J L, et al. Investigation on the effect of geometrical parameters on the performance of a Venturi type bubble generator[J]. Nuclear Engineering and Design, 2017, 325: 90-96. |
10 | Tsuge H. Fundamental of microbubbles and nanobubbles[J]. Bulletin of the Society of Sea Water Science Japan, 2010, 64: 4-10. |
11 | Kim Y B, Lee H S, Francis L, et al. Innovative swirling flow-type microbubble generator for multi-stage DCMD desalination system: focus on the two-phase flow pattern, bubble size distribution, and its effect on MD performance[J]. Journal of Membrane Science, 2019, 588: 117197. |
12 | Rehman F, Medley G J D, Bandulasena H, et al. Fluidic oscillator-mediated microbubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants[J]. Environmental Research, 2015, 137: 32-39. |
13 | Tian H Z, Pi S F, Feng Y C, et al. One-dimensional drift-flux model of gas holdup in fine-bubble jet reactor[J]. Chemical Engineering Journal, 2020, 386: 121222. |
14 | Weber J, Agblevor F A. Microbubble fermentation of Trichoderma reesei for cellulase production[J]. Process Biochemistry, 2005, 40(2): 669-676. |
15 | Wang X Y, Shuai Y, Zhou X R, et al. Performance comparison of swirl-Venturi bubble generator and conventional Venturi bubble generator[J]. Chemical Engineering and Processing-Process Intensification, 2020, 154: 108022. |
16 | 丁国栋, 陈家庆, 王春升, 等. 轴向旋流式微气泡发生器的结构设计与数值模拟[J]. 过程工程学报, 2018, 18(5): 934-941. |
Ding G D, Chen J Q, Wang C S, et al. Structural design and numerical simulation of axial-swirling type micro-bubble generator[J]. Chinese Journal of Process Engineering, 2018, 18(5): 934-941. | |
17 | Han Y, Liu Y F, Hong J, et al. Large scale preparation of microbubbles by multi-channel ceramic membranes: hydrodynamics and mass transfer characteristics[J]. The Canadian Journal of Chemical Engineering, 2017, 95(11): 2176-2185. |
18 | Liu Y, Han Y, Li X L, et al. Controlling microbubbles in alcohol solutions by using a multi-channel ceramic membrane distributor[J]. Journal of Chemical Technology & Biotechnology, 2018, 93: 2456-2463. |
19 | Liu Y, Han Y, Li X L, et al. Efficient control of microbubble properties by alcohol shear flows in ceramic membrane channels[J]. Chemical Engineering & Technology, 2018, 41(1): 168-174. |
20 | Wang Z C, Guo K, Liu H, et al. Effects of bubble size on the gas-liquid mass transfer of bubble swarms with Sauter mean diameters of 0.38—4.88 mm in a co-current upflow bubble column[J]. Journal of Chemical Technology and Biotechnology, 2020, 95(11): 2853-2867. |
21 | Zeng W, Jia C, Luo H X, et al. Microbubble-dominated mass transfer intensification in the process of ammonia-based flue gas desulfurization[J]. Industrial & Engineering Chemistry Research, 2020, 59(44): 19781-19792. |
22 | Li C X, Cui Y Z, Shi X G, et al. Numerical simulation on the terminal rise velocity and mass transfer rate of single sub-millimeter bubbles[J]. Chemical Engineering Science, 2021, 246: 116963. |
23 | 李成祥, 崔怡洲, 石孝刚, 等. 表面活性物质影响下单个自由上升微气泡传质过程的直接数值模拟[J]. 过程工程学报, 2021, 21(8): 877-886. |
Li C X, Cui Y Z, Shi X G, et al. Direct numerical simulation of mass transfer process of single free rising microbubbles under the influence of surface active materials[J]. Chinese Journal of Process Engineering, 2021, 21(8): 877-886. | |
24 | Cui Y Z, Li C X, Zhang W L, et al. A deep learning-based image processing method for bubble detection, segmentation, and shape reconstruction in high gas holdup sub-millimeter bubbly flows[J]. Chemical Engineering Journal, 2022, 449: 137859. |
25 | Ansari M, Turney D E, Yakobov R, et al. Chemical hydrodynamics of a downward microbubble flow for intensification of gas-fed bioreactors[J]. AIChE Journal, 2018, 64(4): 1399-1411. |
26 | 安钢, 孙波, 安以弘, 等. 不同类型鼓泡塔气液并流时液相轴向扩散系数[J]. 过程工程学报, 2010, 10(6): 1048-1053. |
An G, Sun B, An Y H, et al. Liquid phase axial diffusion coefficients of gas-liquid concurrent flow in different types of bubbling column[J]. Chinese Journal of Process Engineering, 2010, 10(6): 1048-1053. | |
27 | Li C X, Cui Y Z, Zhai L X, et al. Study on drag coefficient for sub-millimeter bubbles in gas-liquid bubbly flow: experiments and CFD simulations[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2023.147236 . |
28 | Tomiyama A. Struggle with computational bubble dynamics[J]. Multiphase Science and Technology, 1998, 10: 369-405. |
29 | Jajuee B, Margaritis A, Karamanev D, et al. Application of surface-renewal-stretch model for interface mass transfer[J]. Chemical Engineering Science, 2006, 61: 3917-3929. |
30 | Chen J Q, Brooks C S. Experiments and CFD simulation of mass transfer and hydrodynamics in a cylindrical bubble column[J]. Chemical Engineering Science, 2021, 234: 116435. |
31 | 黄子宾. 鼓泡塔内液相多尺度循环流动结构的研究[D]. 上海: 华东理工大学, 2011. |
Huang Z B. Study on liquid multiscale circulation structure in a bubble column[D]. Shanghai: East China University of Science and Technology, 2011. |
[1] | Ruohan ZHAO, Mengmeng HUANG, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Flow and mass transfer study of CO2 absorption by nanofluid in T-shaped microchannels [J]. CIESC Journal, 2024, 75(1): 221-230. |
[2] | Junnan WANG, Chengxiang HE, Zhongdong WANG, Chunying ZHU, Youguang MA, Taotao FU. Numerical simulation of homogeneous mixing in T-junction micromixers [J]. CIESC Journal, 2024, 75(1): 242-254. |
[3] | Yao ZHOU, Xiaoping YANG, Yicheng NI, Jiping LIU, Jinjia WEI, Junjie YAN. Numerical simulation of two-phase steam ejector applied in novel loop heat pipe [J]. CIESC Journal, 2024, 75(1): 268-278. |
[4] | Yijiang WANG, Li SUN, Menghan LIU, Jinhong YANG, Guoyuan WANG. Optimization on parameter of plate-fin-and-tube air cooler in mines based on response surface method [J]. CIESC Journal, 2024, 75(1): 279-291. |
[5] | Bidan ZHAO, Yiyang DAI, Junwu WANG, Yongmin ZHANG. CFD-DEM-IBM simulation on force characteristic on inclined-surface baffles in fluidized beds [J]. CIESC Journal, 2024, 75(1): 255-267. |
[6] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[7] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[8] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[9] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[10] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[11] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[12] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[13] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[14] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[15] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||