CIESC Journal ›› 2024, Vol. 75 ›› Issue (7): 2409-2421.DOI: 10.11949/0438-1157.20240255
• Thermodynamics • Previous Articles Next Articles
Xiaoqiao QIN(), Hongbo TAN(
), Na WEN
Received:
2024-03-04
Revised:
2024-05-11
Online:
2024-08-09
Published:
2024-07-25
Contact:
Hongbo TAN
通讯作者:
谭宏博
作者简介:
秦晓巧(2000—),女,硕士研究生,3122103238@stu.xjtu.edu.cn
基金资助:
CLC Number:
Xiaoqiao QIN, Hongbo TAN, Na WEN. Thermodynamic and economic analysis of air separation unit with energy storage and generation[J]. CIESC Journal, 2024, 75(7): 2409-2421.
秦晓巧, 谭宏博, 温娜. 储能式低温空分系统热力学与经济性分析[J]. 化工学报, 2024, 75(7): 2409-2421.
对象 | 参数 | 数值 |
---|---|---|
纯化空气 | 温度 | 298.15 K [ |
压力 | 0.1013 MPa [ | |
氧气产品 | 纯度 | ≥99.6%(摩尔分数) [ |
氮气产品 | 纯度 | ≥99.999%(摩尔分数) |
CAC | 绝热效率 | 80% [ |
压比 | 1.4 | |
PAC | 绝热效率 | 80% |
压比 | 1.4 | |
BET | 增压端绝热效率 | 75% |
膨胀端等熵效率 | 78% | |
膨胀端出口带液量 | ≤3% | |
AT | 等熵效率 | 80% |
排气压力 | 0.55 MPa | |
LAT | 容积 | 120 m3 |
压力 | 0.55 MPa | |
LAP | 绝热效率 | 80% [ |
泵后压力 | 6 MPa | |
CACC/PACC/BETC | 进口水温 | 305.15 K [ |
CON | 最小换热温差 | ≥1 K [ |
MHX/SC | 最小换热温差 | ≥0.5 K |
HPC | 压力 | 0.55 MPa |
塔板数 | 30 | |
LPC | 压力 | 0.13 MPa [ |
塔板数 | 50 |
Table 1 Main parameters of ASU-ESG system
对象 | 参数 | 数值 |
---|---|---|
纯化空气 | 温度 | 298.15 K [ |
压力 | 0.1013 MPa [ | |
氧气产品 | 纯度 | ≥99.6%(摩尔分数) [ |
氮气产品 | 纯度 | ≥99.999%(摩尔分数) |
CAC | 绝热效率 | 80% [ |
压比 | 1.4 | |
PAC | 绝热效率 | 80% |
压比 | 1.4 | |
BET | 增压端绝热效率 | 75% |
膨胀端等熵效率 | 78% | |
膨胀端出口带液量 | ≤3% | |
AT | 等熵效率 | 80% |
排气压力 | 0.55 MPa | |
LAT | 容积 | 120 m3 |
压力 | 0.55 MPa | |
LAP | 绝热效率 | 80% [ |
泵后压力 | 6 MPa | |
CACC/PACC/BETC | 进口水温 | 305.15 K [ |
CON | 最小换热温差 | ≥1 K [ |
MHX/SC | 最小换热温差 | ≥0.5 K |
HPC | 压力 | 0.55 MPa |
塔板数 | 30 | |
LPC | 压力 | 0.13 MPa [ |
塔板数 | 50 |
项目 | 低谷时段 | 平时段 | 高峰时段 |
---|---|---|---|
时间范围 | 23∶00~7∶00 | 7∶00~10∶00,15∶00~18∶00,21∶00~23∶00 | 10∶00~15∶00,18∶00~21∶00 |
ASU-ESG系统运行模式 | 储能模式 | 常规模式 | 释能模式 |
ASU-ESG系统每日运行时长 | 8 h | 8 h | 8 h |
Table 2 Peak and valley electricity periods in Shanghai industrials[3]
项目 | 低谷时段 | 平时段 | 高峰时段 |
---|---|---|---|
时间范围 | 23∶00~7∶00 | 7∶00~10∶00,15∶00~18∶00,21∶00~23∶00 | 10∶00~15∶00,18∶00~21∶00 |
ASU-ESG系统运行模式 | 储能模式 | 常规模式 | 释能模式 |
ASU-ESG系统每日运行时长 | 8 h | 8 h | 8 h |
参数 | 常规ASU系统 | ASU-ESG 系统储能过程 | ASU-ESG 系统释能过程 |
---|---|---|---|
氧气产品 | |||
产量/(m3/h) | 9649 | 9650 | 9649 |
纯度/% (摩尔分数) | 99.60 | 99.60 | 99.60 |
提取率/% | 91.53 | 89.46 | 93.71 |
氮气产品 | |||
产量/(m3/h) | 21910 | 21910 | 21910 |
纯度/% (摩尔分数) | 99.999 | 99.999 | 99.999 |
提取率/% | 55.47 | 52.80 | 58.42 |
压缩机功耗/kW | 3548 | 4542 | 2838 |
液态空气泵功耗/kW | — | — | 24 |
空气膨胀机输出功率/kW | — | — | 190 |
日均制氧压缩功比功耗/(kW·h/m3) | 0.368 | 0.471 | 0.294 |
Table 3 Distillation product simulation results of conventional ASU and ASU-ESG systems
参数 | 常规ASU系统 | ASU-ESG 系统储能过程 | ASU-ESG 系统释能过程 |
---|---|---|---|
氧气产品 | |||
产量/(m3/h) | 9649 | 9650 | 9649 |
纯度/% (摩尔分数) | 99.60 | 99.60 | 99.60 |
提取率/% | 91.53 | 89.46 | 93.71 |
氮气产品 | |||
产量/(m3/h) | 21910 | 21910 | 21910 |
纯度/% (摩尔分数) | 99.999 | 99.999 | 99.999 |
提取率/% | 55.47 | 52.80 | 58.42 |
压缩机功耗/kW | 3548 | 4542 | 2838 |
液态空气泵功耗/kW | — | — | 24 |
空气膨胀机输出功率/kW | — | — | 190 |
日均制氧压缩功比功耗/(kW·h/m3) | 0.368 | 0.471 | 0.294 |
序号 | 峰电单价 | 谷电单价 | 平电单价 | 每月容量电价 | 峰谷价差/ (CNY/(kW·h)) |
---|---|---|---|---|---|
1 | 1.177 | 0.329 | 0.707 | 20 | 0.848 |
2 | 1.127 | 0.315 | 0.677 | 20 | 0.812 |
3 | 1.077 | 0.301 | 0.647 | 20 | 0.776 |
4 | 1.027 | 0.287 | 0.617 | 20 | 0.740 |
5 | 0.977 | 0.273 | 0.587 | 20 | 0.704 |
6 | 0.928 | 0.259 | 0.557 | 20 | 0.668 |
7 | 0.878 | 0.245 | 0.527 | 20 | 0.632 |
8 | 0.828 | 0.231 | 0.497 | 20 | 0.596 |
9 | 0.778 | 0.217 | 0.467 | 20 | 0.560 |
10 | 0.728 | 0.203 | 0.437 | 20 | 0.524 |
Table 4 Calculation of electricity price assumptions
序号 | 峰电单价 | 谷电单价 | 平电单价 | 每月容量电价 | 峰谷价差/ (CNY/(kW·h)) |
---|---|---|---|---|---|
1 | 1.177 | 0.329 | 0.707 | 20 | 0.848 |
2 | 1.127 | 0.315 | 0.677 | 20 | 0.812 |
3 | 1.077 | 0.301 | 0.647 | 20 | 0.776 |
4 | 1.027 | 0.287 | 0.617 | 20 | 0.740 |
5 | 0.977 | 0.273 | 0.587 | 20 | 0.704 |
6 | 0.928 | 0.259 | 0.557 | 20 | 0.668 |
7 | 0.878 | 0.245 | 0.527 | 20 | 0.632 |
8 | 0.828 | 0.231 | 0.497 | 20 | 0.596 |
9 | 0.778 | 0.217 | 0.467 | 20 | 0.560 |
10 | 0.728 | 0.203 | 0.437 | 20 | 0.524 |
设备 | 能量平衡方程 | 㶲平衡方程 |
---|---|---|
CAC | ||
PAC | ||
BET | ||
CACC | ||
PACC | ||
BETC | ||
MHX | ||
CON | ||
SC | ||
TV | ||
SEP | ||
LAT | ||
DC | ||
LAP | ||
AT |
Table A1 Energy balance equations and exergy balance equations for ASU-ESG system
设备 | 能量平衡方程 | 㶲平衡方程 |
---|---|---|
CAC | ||
PAC | ||
BET | ||
CACC | ||
PACC | ||
BETC | ||
MHX | ||
CON | ||
SC | ||
TV | ||
SEP | ||
LAT | ||
DC | ||
LAP | ||
AT |
项目 | 设备 | 成本估算模型 |
---|---|---|
预处理和纯化单元 | PPU | |
涡轮机械 | CAC | |
PAC | KCEPCI=CEPCI2023/CEPCI2001=708/397 [ KBM=2.75,K1=2.2897,K2=1.3604,K3=-0.1027 | |
BET | ||
换热设备 | CACC/PACC/BETC | |
精馏单元 | SC | |
MHX | ||
TV1/TV2 | ||
SEP1 | ||
HPC/LPC | ||
LAES单元 | CON | |
LAT | ||
LAP | ||
AT | ||
TV3 | ||
SEP2 |
Table A2 Equipment investment cost calculation formulas for the ASU-ESG system
项目 | 设备 | 成本估算模型 |
---|---|---|
预处理和纯化单元 | PPU | |
涡轮机械 | CAC | |
PAC | KCEPCI=CEPCI2023/CEPCI2001=708/397 [ KBM=2.75,K1=2.2897,K2=1.3604,K3=-0.1027 | |
BET | ||
换热设备 | CACC/PACC/BETC | |
精馏单元 | SC | |
MHX | ||
TV1/TV2 | ||
SEP1 | ||
HPC/LPC | ||
LAES单元 | CON | |
LAT | ||
LAP | ||
AT | ||
TV3 | ||
SEP2 |
项目 | 计算模型 |
---|---|
系统设备( | 见表A2 |
安装工程( | |
仪控电控系统( | |
管道( | |
其他( | |
直接支出( | |
采购( | |
施工( | |
间接支出( | |
资本支出总额( | |
运营人工( | |
维修维护( | |
保险( | |
年度固定运营支出( | |
电力( | 见正文 |
冷却用水( | |
耗材( | |
年度可变运营支出( | |
年度运营支出总额( |
Table A3 Capital investment and operating cost models
项目 | 计算模型 |
---|---|
系统设备( | 见表A2 |
安装工程( | |
仪控电控系统( | |
管道( | |
其他( | |
直接支出( | |
采购( | |
施工( | |
间接支出( | |
资本支出总额( | |
运营人工( | |
维修维护( | |
保险( | |
年度固定运营支出( | |
电力( | 见正文 |
冷却用水( | |
耗材( | |
年度可变运营支出( | |
年度运营支出总额( |
1 | 才正彬. 空分装置高效节能优化与应用[D]. 杭州: 浙江大学, 2019. |
Cai Z B. High efficiency and energy saving optimization and application of air separation unit[D]. Hangzhou: Zhejiang University, 2019. | |
2 | 张培昆, 王立. 空分短期停车时间阈值对氧气生产调度的影响[J]. 化工学报, 2017, 68(6): 2423-2433. |
Zhang P K, Wang L. Effects of temporary shutdown time-threshold on oxygen production schedule in air separation unit[J]. CIESC Journal, 2017, 68(6): 2423-2433. | |
3 | Liu Y N, Wang L, He X F. An external-compression air separation unit with energy storage and its thermodynamic and economic analysis[J]. Journal of Energy Storage, 2023, 59: 106513. |
4 | 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30. |
Wang C, She X H, Zhang X S. Thermodynamic study of liquid air energy storage with air purification unit[J]. CIESC Journal, 2020, 71(S1): 23-30. | |
5 | Wang K W, Tong L G, Yin S W, et al. Novel ASU-LAES system with flexible energy release: analysis of cycle performance, economics, and peak shaving advantages[J]. Energy, 2024, 288: 129720. |
6 | Liu Y X, Kong F L, Tong L G, et al. A novel cryogenic air separation unit with energy storage: recovering waste heat and reusing storage media[J]. Journal of Energy Storage, 2024, 80: 110359. |
7 | He X F, Liu Y N, Rehman A, et al. A novel air separation unit with energy storage and generation and its energy efficiency and economy analysis[J]. Applied Energy, 2021, 281: 115976. |
8 | He X F, Liu Y N, Rehman A, et al. Feasibility and performance analysis of a novel air separation unit with energy storage and air recovery[J]. Renewable Energy, 2022, 195: 598-619. |
9 | Kong F L, Liu Y X, Shen M H, et al. A novel economic scheduling of multi-product deterministic demand for co-production air separation system with liquid air energy storage[J]. Renewable Energy, 2023, 209: 533-545. |
10 | 黄欢. 耦合空分装置生产的液化空气储能系统研究[J]. 当代化工研究, 2022(16): 101-103. |
Huang H. Research on the liquefied air energy storage system coupled with air separation unit production[J]. Modern Chemical Research, 2022(16): 101-103. | |
11 | 刘波. 基于HYSYS的空分精馏过程仿真分析[D]. 西安: 西安电子科技大学, 2013. |
Liu B. Distillation process simulation analysis based on HYSYS[D]. Xi’an: Xidian University, 2013. | |
12 | Li D, Duan L Q. Techno-economic analysis of a new thermal storage operation strategy for a solar aided liquid air energy storage system[J]. Journal of Energy Storage, 2024, 78: 110029. |
13 | Adedeji M, Abid M, Dagbasi M, et al. Improvement of a liquid air energy storage system: investigation of performance analysis for novel ambient air conditioning[J]. Journal of Energy Storage, 2022, 50: 104294. |
14 | 初日召, 李勇, 王庄. KDON-5600/14000空分装置运行总结[J]. 中国氯碱, 2017(8): 28-30, 47. |
Chu R Z, Li Y, Wang Z. Introduction and operation summary of KDON-5600/14000 air separation unit[J]. China Chlor-Alkali, 2017(8): 28-30, 47. | |
15 | Huo C J, Sun J J, Song P. Energy, exergy and economic analyses of an optimal use of cryogenic liquid turbine expander in air separation units[J]. Chemical Engineering Research and Design, 2023, 189: 194-209. |
16 | Li Y H, Fan X Y, Li J X, et al. Novel liquid air energy storage coupled with liquefied ethylene cold energy: thermodynamic, exergy and economic analysis[J]. Applied Thermal Engineering, 2024, 245: 122909. |
17 | 荣杨一鸣, 吴巧仙, 周霞, 等. 空分系统空气压缩余热自利用性能优化研究[J]. 化工学报, 2021, 72(3): 1654-1666. |
Rong Y Y M, Wu Q X, Zhou X, et al. Research on optimization of self-utilization performance of air compression waste heat in air separation system[J]. CIESC Journal, 2021, 72(3): 1654-1666. | |
18 | Yang Y, Tong L G, Liu Y X, et al. A novel integrated system of hydrogen liquefaction process and liquid air energy storage (LAES): energy, exergy, and economic analysis[J]. Energy Conversion and Management, 2023, 280: 116799. |
19 | Tesch S, Morosuk T, Tsatsaronis G. Comparative evaluation of cryogenic air separation units from the exergetic and economic points of view[M]//Tatiana M, Muhammad S. Low-temperature Technologies. Rijeka: IntechOpen, 2019. |
20 | Fan X Y, Ji W, Guo L N, et al. Thermo-economic analysis of the integrated system of thermal power plant and liquid air energy storage[J]. Journal of Energy Storage, 2023, 57: 106233. |
21 | 李燕鹏. 低温空气分离装置的流程选型方法研究[D]. 杭州: 浙江大学, 2019. |
Li Y P. Research on process selection method of cryogenic air separation unit[D]. Hangzhou: Zhejiang University, 2019. | |
22 | 盛新江. 空分设备项目投资经济性分析[J]. 深冷技术, 2005(4): 5-7. |
Sheng X J. Economic analysis of investing an ASU project[J]. Cryogenic Technology, 2005(4): 5-7. | |
23 | 中华人民共和国个人所得税法实施条例[J]. 中华人民共和国国务院公报, 2019(1): 25-30. |
Regulations for the implementation of the individual income tax law of the People’s Republic of China[J]. Gazette of the State Council of the People’s Republic of China, 2019(1): 25-30. | |
24 | 田英男. 先进绝热压缩空气储能系统的高等㶲分析及经济性评价[D]. 济南:山东大学, 2023. |
Tian Y N. Advanced exergy analysis and economic evaluation of advanced adiabatic compressed air energy storage system[D]. Jinan: Shandong University, 2023. | |
25 | 周程, 苏礼勇. 40000 m3/h空分装置设备选型及优化的可行性分析[J]. 中氮肥, 2020(3): 1-6. |
Zhou C, Su L Y. Feasibility analysis of equipment selection and optimization of 40000 m3/h air separation unit[J]. Nitrogenous Fertilizer Progress, 2020(3): 1-6. | |
26 | 李政辰. 整装冷箱形式特大型空分设备成本管理研究[D]. 杭州: 浙江大学, 2023. |
Li Z C. Study of cost control of large size ASU with modular coldbox[D]. Hangzhou: Zhejiang University, 2023. | |
27 | Li J X, Fan X Y, Li Y H, et al. A novel system of liquid air energy storage with LNG cold energy and industrial waste heat: thermodynamic and economic analysis[J]. Journal of Energy Storage, 2024, 86: 111359. |
28 | Gao Z Z, Ji W, Guo L N, et al. Thermo-economic analysis of the integrated bidirectional peak shaving system consisted by liquid air energy storage and combined cycle power plant[J]. Energy Conversion and Management, 2021, 234: 113945. |
29 | Liu Y X, Tong L G, Kong F L, et al. An improved ASU distillation process and DIM-LPB method for variable product ratio demand[J]. Separation and Purification Technology, 2021, 277: 119499. |
30 | 陈仕卿. LNG冷能在空气分离系统中的集成与优化研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2019. |
Chen S Q. Research on the integration of LNG regasification and air separation units[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2019. | |
31 | 马国光, 李雅娴, 张晨. 基于改良㶲分析方法的LNG冷能空分工艺优化[J]. 天然气工业, 2018, 38(9): 121-128. |
Ma G G, Li Y X, Zhang C. Optimization of the LNG cold energy air separation process based on the advanced exergy analysis method[J]. Natural Gas Industry, 2018, 38(9): 121-128. | |
32 | 李佳佳, 李兴朔, 魏凡超, 等. 耦合火电机组的新型压缩空气储能系统技术经济性评估研究[J]. 中国电机工程学报, 2023, 43(23): 9171-9183. |
Li J J, Li X S, Wei F C, et al. Research on techno-economic evaluation of new type compressed air energy storage coupled with thermal power unit[J]. Proceedings of the CSEE, 2023, 43(23): 9171-9183. | |
33 | Bashiri Mousavi S, Ahmadi P, Hanafizadeh P, et al. Dynamic simulation and techno-economic analysis of liquid air energy storage with cascade phase change materials as a cold storage system[J]. Journal of Energy Storage, 2022, 50: 104179. |
34 | Saleh Kandezi M, Mousavi Naeenian S M. Investigation of an efficient and green system based on liquid air energy storage (LAES) for district cooling and peak shaving: energy and exergy analyses[J]. Sustainable Energy Technologies and Assessments, 2021, 47:101396. |
35 | Singla R, Chowdhury K. Comparisons of thermodynamic and economic performances of cryogenic air separation plants designed for external and internal compression of oxygen[J]. Applied Thermal Engineering, 2019, 160: 114025. |
36 | Hamdy S, Morosuk T, Tsatsaronis G. Exergetic and economic assessment of integrated cryogenic energy storage systems[J]. Cryogenics, 2019, 99: 39-50. |
37 | Ebrahimi A, Ziabasharhagh M. Optimal design and integration of a cryogenic air separation unit (ASU) with liquefied natural gas (LNG) as heat sink, thermodynamic and economic analyses[J]. Energy, 2017, 126: 868-885. |
38 | Mehrpooya M, Zonouz M J. Analysis of an integrated cryogenic air separation unit, oxy-combustion carbon dioxide power cycle and liquefied natural gas regasification process by exergoeconomic method[J]. Energy Conversion and Management, 2017, 139: 245-259. |
39 | 王之宇. 热耦合空分塔的节能优化与最优结构设计研究[D]. 杭州: 浙江大学, 2021. |
Wang Z Y. Research on energy saving optimization and optimal structure design of heat-intrgrated air separation columns[D]. Hangzhou: Zhejiang University, 2021. | |
40 | Park J H, Heo J Y, Lee J I. Techno-economic study of nuclear integrated liquid air energy storage system[J]. Energy Conversion and Management, 2022, 251: 114937. |
[1] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[2] | Chen WANG, Xiaohui SHE, Xiaosong ZHANG. Thermodynamic study of liquid air energy storage with air purification unit [J]. CIESC Journal, 2020, 71(S1): 23-30. |
[3] | Tao TIAN, Bing LIU, Meisheng SHI, Yaxiong AN, Jun MA, Yanjun ZHANG, Xinxi XU, Donghui ZHANG. Experiment and simulation of PSA process for small oxygen generator with two adsorption beds [J]. CIESC Journal, 2019, 70(3): 969-978. |
[4] | Yayan WANG, Caixia TIAN, Zhaoyang DING, Zhongli TANG, Donghui ZHANG. Simulation and analysis of dual-reflux pressure swing adsorption for air separation [J]. CIESC Journal, 2019, 70(10): 4002-4011. |
[5] | ZHENG Jieyu, LI Guangpeng, LI Yanzhong, SI Biao, YANG Yujie. Heat exchanger network arrangement and multi-level matching characteristic of air separation system using LNG cold energy [J]. CIESC Journal, 2015, 66(S2): 76-84. |
[6] | ZHU Lin,ZHANG Zheng,FAN Junming. Processing parameter analysis on integrated coal gasification system with chemical looping air separation [J]. Chemical Industry and Engineering Progree, 2014, 33(08): 1997-2003. |
[7] | WANG Haoyu1,2,LIU Yingshu1,YANG Xiong1. Progress in air pre-purification technology [J]. Chemical Industry and Engineering Progree, 2014, 33(03): 542-549. |
[8] | CHANG Liang, LIU Xinggao. Energy optimization analysis of internal thermally coupled air separation columns [J]. CIESC Journal, 2012, 63(9): 2936-2940. |
[9] | LI Dexin, JIANG Bo, REN Yicheng, ZHU Lingyu, JIANG Pengfei, ZHOU Lifang. Aggregated model high purity distillation column based on group methods [J]. CIESC Journal, 2012, 63(9): 2710-2715. |
[10] | LI Jun1,2,WANG Rujun1,ZHANG Yueming1,MA Zhanhua1,SUN Lanyi1. Study on the application of dividing wall column to air separation [J]. , 2011, 30(11): 2393-. |
[11] | CHEN Hua, LI Dongfei, JIANG Guoliang, XU Renxian. MATHEMATICAL AND EXPERIMENTAL ANALYSIS OF AIR SEPARATION BY HOLLOW FIBER MEMBRANES [J]. , 1995, 3(2): 72-81. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 124
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 218
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||