CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 969-978.DOI: 10.11949/j.issn.0438-1157.20180729
• Separation engineering • Previous Articles Next Articles
Tao TIAN1(),Bing LIU2,Meisheng SHI1,Yaxiong AN2,Jun MA1,Yanjun ZHANG1,Xinxi XU1(),Donghui ZHANG2()
Received:
2018-07-04
Revised:
2018-09-19
Online:
2019-03-05
Published:
2019-03-05
Contact:
Xinxi XU,Donghui ZHANG
田涛1(),刘冰2,石梅生1,安亚雄2,马军1,张彦军1,徐新喜1(),张东辉2()
通讯作者:
徐新喜,张东辉
作者简介:
<named-content content-type="corresp-name">田涛</named-content>(1979—),男,硕士,工程师,<email>wzstiantao@163.com</email>|徐新喜(1965—),男,博士,研究员,<email>xuxx1@sohu.com</email>|张东辉(1971—),男,博士,副研究员,<email>donghuizhang@tju.edu.cn</email>
基金资助:
CLC Number:
Tao TIAN, Bing LIU, Meisheng SHI, Yaxiong AN, Jun MA, Yanjun ZHANG, Xinxi XU, Donghui ZHANG. Experiment and simulation of PSA process for small oxygen generator with two adsorption beds[J]. CIESC Journal, 2019, 70(3): 969-978.
田涛, 刘冰, 石梅生, 安亚雄, 马军, 张彦军, 徐新喜, 张东辉. 双塔微型变压吸附制氧机实验和模拟[J]. 化工学报, 2019, 70(3): 969-978.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180729
Bed | Time/s | |||||
---|---|---|---|---|---|---|
4—9 | 0.8 | 4—9 | 0.8 | |||
1 | AD | ED | PP | PUR | ER | |
2 | PP | PUR | ER | AD | ED |
Table 1 Schedule for two-bed PSA process
Bed | Time/s | |||||
---|---|---|---|---|---|---|
4—9 | 0.8 | 4—9 | 0.8 | |||
1 | AD | ED | PP | PUR | ER | |
2 | PP | PUR | ER | AD | ED |
Model equation | Mathematical expression | |
---|---|---|
mass balance | (1) (2) | |
energy balance gas phase solid phase bed wall | (3) | |
(4) | ||
(5) | ||
momentum balance | (6) | |
adsorption balance | (7) | |
adsorption rate | (8) | |
purity | (9) | |
recovery | (10) | |
productivity | (11) | |
valve | (12) |
Table 2 Mathematical model of bed for two-bed PSA process
Model equation | Mathematical expression | |
---|---|---|
mass balance | (1) (2) | |
energy balance gas phase solid phase bed wall | (3) | |
(4) | ||
(5) | ||
momentum balance | (6) | |
adsorption balance | (7) | |
adsorption rate | (8) | |
purity | (9) | |
recovery | (10) | |
productivity | (11) | |
valve | (12) |
Parameter | Value |
---|---|
Hb/m | 0.339 |
Db/m | 0.068 |
Wt/m | 0.001 |
rp/m | 6.0× 10-4 |
ρb /(kg·m-3) | 610.0 |
kw/(W·m-1·K-1) | 17.0 |
ks/(W·m-1·K-1) | 0.30 |
kg/(W·m-1·K-1) | 0.024 |
cpw /(kJ·kg-1·K-1) | 0.502 |
cps /(kJ·kg-1·K-1) | 0.902 |
cvg /(kJ·kg-1·K-1) | 0.758 |
Hamb/(W·m-2·K-1) | 22.3 |
hw/(W·m-2·K-1) | 10.0 |
hf/(W·m-2·K-1) | 60.0 |
εb | 0.33 |
εp | 0.53 |
ρw /(kg·m-3) | 7800 |
Tamb/K | 298.15 |
Table 3 Physical characteristics of adsorption bed and adsorbent
Parameter | Value |
---|---|
Hb/m | 0.339 |
Db/m | 0.068 |
Wt/m | 0.001 |
rp/m | 6.0× 10-4 |
ρb /(kg·m-3) | 610.0 |
kw/(W·m-1·K-1) | 17.0 |
ks/(W·m-1·K-1) | 0.30 |
kg/(W·m-1·K-1) | 0.024 |
cpw /(kJ·kg-1·K-1) | 0.502 |
cps /(kJ·kg-1·K-1) | 0.902 |
cvg /(kJ·kg-1·K-1) | 0.758 |
Hamb/(W·m-2·K-1) | 22.3 |
hw/(W·m-2·K-1) | 10.0 |
hf/(W·m-2·K-1) | 60.0 |
εb | 0.33 |
εp | 0.53 |
ρw /(kg·m-3) | 7800 |
Tamb/K | 298.15 |
Parameter | Ar | N2 | O2 |
---|---|---|---|
IP1/(mol·kg-1·kPa-1) | 1.16× 10-8 | 2.72× 10-9 | 1.16× 10-8 |
IP2/K | 1406 | 2465 | 1406 |
IP3/kPa-1 | 1.86× 10-6 | 1.11× 10-6 | 1.86× 10-6 |
IP4/K | 1406 | 2465 | 1406 |
ΔH/(kJ-1·mol-1) | -13.478 | -24.57 | -13.478 |
cpa/(kJ·kmol?1·K?1) | 20.8 | 29.06 | 29.09 |
Table 4 Parameters of Langmuir adsorption model for N2/O2/Ar
Parameter | Ar | N2 | O2 |
---|---|---|---|
IP1/(mol·kg-1·kPa-1) | 1.16× 10-8 | 2.72× 10-9 | 1.16× 10-8 |
IP2/K | 1406 | 2465 | 1406 |
IP3/kPa-1 | 1.86× 10-6 | 1.11× 10-6 | 1.86× 10-6 |
IP4/K | 1406 | 2465 | 1406 |
ΔH/(kJ-1·mol-1) | -13.478 | -24.57 | -13.478 |
cpa/(kJ·kmol?1·K?1) | 20.8 | 29.06 | 29.09 |
Step | z=0 | z=L |
---|---|---|
adsorption(AD step) | ||
equalization repressurization(ER step) | ||
equalization depressurization(ED step) | ||
PUR(product upper gas purge step) | ||
PP(purge product gas step) | ||
Table 5 Summary of boundary conditions for each step
Step | z=0 | z=L |
---|---|---|
adsorption(AD step) | ||
equalization repressurization(ER step) | ||
equalization depressurization(ED step) | ||
PUR(product upper gas purge step) | ||
PP(purge product gas step) | ||
Altitude /m | Tower high/mm | Adsorption time/s | Pore size/mm | Qout/ (L·min-1) | Purity/% | Recovery/% | ||
---|---|---|---|---|---|---|---|---|
Simulation | Experiment | Simulation | Experiment | |||||
2000 | 339 | 7 | 0.9 | 5.00 | 94.86 | 94.30 | 35.73 | 35.63 |
3000 | 339 | 7 | 0.9 | 5.00 | 92.64 | 94.00 | 40.95 | 41.59 |
4000 | 339 | 7 | 0.9 | 5.00 | 86.41 | 91.85 | 45.16 | 48.20 |
5000 | 339 | 7 | 0.9 | 5.00 | 80.98 | 83.75 | 47.24 | 48.95 |
3000 | 226 | 3 | 0.9 | 5.00 | 91.22 | 90.01 | 39.04 | 38.64 |
3000 | 226 | 4 | 0.9 | 5.00 | 92.17 | 91.89 | 40.37 | 40.13 |
3000 | 226 | 5 | 0.9 | 5.00 | 93.19 | 92.35 | 41.66 | 41.41 |
3000 | 226 | 6 | 0.9 | 5.00 | 92.93 | 91.40 | 42.36 | 41.79 |
3000 | 226 | 7 | 0.9 | 5.00 | 92.24 | 89.41 | 42.97 | 41.78 |
5000 | 339 | 9 | 0.6 | 4.40 | 88.31 | 90.56 | 48.11 | 49.00 |
5000 | 339 | 9 | 0.7 | 4.40 | 89.24 | 91.57 | 48.05 | 48.97 |
5000 | 339 | 9 | 0.8 | 4.40 | 90.23 | 92.95 | 47.80 | 48.90 |
5000 | 339 | 9 | 0.9 | 4.40 | 88.72 | 93.15 | 46.21 | 48.19 |
5000 | 339 | 9 | 1.0 | 4.40 | 88.14 | 92.05 | 45.87 | 47.58 |
Table 6 Summary of simulation and experiment results for two-bed PSA process
Altitude /m | Tower high/mm | Adsorption time/s | Pore size/mm | Qout/ (L·min-1) | Purity/% | Recovery/% | ||
---|---|---|---|---|---|---|---|---|
Simulation | Experiment | Simulation | Experiment | |||||
2000 | 339 | 7 | 0.9 | 5.00 | 94.86 | 94.30 | 35.73 | 35.63 |
3000 | 339 | 7 | 0.9 | 5.00 | 92.64 | 94.00 | 40.95 | 41.59 |
4000 | 339 | 7 | 0.9 | 5.00 | 86.41 | 91.85 | 45.16 | 48.20 |
5000 | 339 | 7 | 0.9 | 5.00 | 80.98 | 83.75 | 47.24 | 48.95 |
3000 | 226 | 3 | 0.9 | 5.00 | 91.22 | 90.01 | 39.04 | 38.64 |
3000 | 226 | 4 | 0.9 | 5.00 | 92.17 | 91.89 | 40.37 | 40.13 |
3000 | 226 | 5 | 0.9 | 5.00 | 93.19 | 92.35 | 41.66 | 41.41 |
3000 | 226 | 6 | 0.9 | 5.00 | 92.93 | 91.40 | 42.36 | 41.79 |
3000 | 226 | 7 | 0.9 | 5.00 | 92.24 | 89.41 | 42.97 | 41.78 |
5000 | 339 | 9 | 0.6 | 4.40 | 88.31 | 90.56 | 48.11 | 49.00 |
5000 | 339 | 9 | 0.7 | 4.40 | 89.24 | 91.57 | 48.05 | 48.97 |
5000 | 339 | 9 | 0.8 | 4.40 | 90.23 | 92.95 | 47.80 | 48.90 |
5000 | 339 | 9 | 0.9 | 4.40 | 88.72 | 93.15 | 46.21 | 48.19 |
5000 | 339 | 9 | 1.0 | 4.40 | 88.14 | 92.05 | 45.87 | 47.58 |
Altitude/ km | Qout/ (L·min-1) | Purity/% | Recovery/% | (P*/F*)/% | (PO2*/FO2*)/% | (W*/F*)/% | (W*O2*/FO2*)/% | (E*/F*)/% | Composition of pressure equalization gas |
---|---|---|---|---|---|---|---|---|---|
0 | 5 | 93.4 | 34.0 | 11.74 | 52.14 | 92.35 | 65.96 | 9.48 | 81.85%N2, 17.35%O2 |
5 | 4.4 | 93.0 | 47.8 | 9.08 | 38.01 | 89.00 | 53.80 | 9.03 | 81.02%N2, 18.11%O2 |
Table 7 Material balance of O2 in CSS
Altitude/ km | Qout/ (L·min-1) | Purity/% | Recovery/% | (P*/F*)/% | (PO2*/FO2*)/% | (W*/F*)/% | (W*O2*/FO2*)/% | (E*/F*)/% | Composition of pressure equalization gas |
---|---|---|---|---|---|---|---|---|---|
0 | 5 | 93.4 | 34.0 | 11.74 | 52.14 | 92.35 | 65.96 | 9.48 | 81.85%N2, 17.35%O2 |
5 | 4.4 | 93.0 | 47.8 | 9.08 | 38.01 | 89.00 | 53.80 | 9.03 | 81.02%N2, 18.11%O2 |
1 | 卜令兵, 刘应书, 刘文海, 等. 微型变压吸附制氧与氧疗保健[J]. 低温与特气, 2005, 23(1): 5-9. |
BuL B, LiuY S, LiuW H, et al. Micro pressure adsorption oxygen therapy and oxygen therapy health care[J]. Low Temperature and Specialty Gases, 2005, 23 (1): 5-9. | |
2 | 张志刚, 姜锐, 张月胜, 等. 浅谈我国变压吸附技术的进展[J]. 气体分离, 2011, 2: 14-20. |
ZhangZ G, JiangR, ZhangY S, et al. A brief discussion on the progress of pressure swing adsorption technology in China [J]. Gas Separation, 2011, 2: 14-20. | |
3 | 杨雄. 微型变压吸附制氧机发展概况及存在的问题[J]. 气体分离, 2015, (3): 20. |
YangX. Development of micro pressure adsorption pressure adsorption oxygen making machine and its existing problems[J]. Gas Separation, 2015, (3): 20. | |
4 | 吴其蒙. 节能型小型制氧机[J]. 气体分离, 2003, (3) : 54-56. |
WuQ M. Energy saving small oxygen making machine[J]. Gas Separation, 2003, (3): 54-56. | |
5 | 活力. 小型制氧机与家庭氧疗[J]. 临床医学工程, 2001, 12: 62-63. |
HuoL. Small oxygen machine and family oxygen therapy[J]. Clinical Medical Engineering, 2001, 12: 62-63. | |
6 | 崔红社, 刘应书, 乐恺, 等. 小型变压吸附制氧过程的数值模拟[J]. 深冷技术, 2004, (1): 20-23. |
CuiH S, LiuY S, YueK, et al. Mathematical simulation of small PSA oxygen process [J]. Cryogenic Technology, 2004, (1): 20-23. | |
7 | FarooqS, RuthvenD M, BonifaceH A. Numerical simulation of a pressure swing adsorption oxygen unit[J]. Medical Equipment Journal, 1998, 44(12): 2809-2816. |
8 | TeagueK G, EdgarT F. Predictive dynamic model of a small pressure swing adsorption air separation unit[J]. Industrial & Engineering Chemistry Research, 1999, 38(10): 3761-3775. |
9 | FernandezG F, KenneyC N. Modelling of the pressure swing air separation process[J]. Chemical Engineering Science, 1983, 38(6): 827-834. |
10 | FarooqS, RuthvenD M. Numerical simulation of a kinetically controlled pressure swing adsorption bulk separation process based on a diffusion model[J]. Chemical Engineering Science, 1991, 46(9): 2213-2224. |
11 | SilvaF A D, SilvaJ A, RodriguesA E. A general package for the simulation of cyclic adsorption processes[J]. Adsorption-Journal of the International Adsorption Society, 1999, 5(3): 229-244. |
12 | ChaiS W, KothareM V, SircarS. Rapid pressure swing adsorption for reduction of bed size factor of a medical oxygen concentrator[J]. Industrial & Engineering Chemistry Research, 2011, 50(14): 8703-8710. |
13 | RuthvenD M. Principles of Adsorption & Adsorption Processes[M]. New York: Wiley, 1984. |
14 | WuC W, KothareM V, SircarS. Model analysis of equilibrium adsorption isotherms of pure N2, O2, and their binary mixtures on LiLSX zeolite[J]. Industrial & Engineering Chemistry Research, 2014, 53(31): 12428-12434. |
15 | RamaR V, KothareM V, SircarS. Numerical simulation of rapid pressurization and depressurization of a zeolite column using nitrogen[J]. Adsorption-Journal of the International Adsorption Society, 2014, 20(1): 53-60. |
16 | RamaR V, ChaiS W, KothareM V, et al. Highlights of non-equilibrium, non-isobaric, non-isothermal desorption of nitrogen from a LiX zeolite column by rapid pressure reduction and rapid purge by oxygen[J]. Adsorption-Journal of the International Adsorption Society, 2014, 20(2/3): 477-481. |
17 | RamaR V, SircarS. Comparative performance of an adiabatic and a nonadiabatic PSA process for bulk gas separation—a numerical simulation[J]. AIChE Journal, 2017, 63(9): 4066-4078. |
18 | ChaiS W, KothareM V, SircarS. Efficiency of nitrogen desorption from LiX Zeolite by rapid oxygen purge in a pancake adsorber[J]. AIChE Journal, 2013, 59(2): 365-368. |
19 | ChaiS W, KothareM V, SircarS. Numerical study of nitrogen desorption by rapid oxygen purge for a medical oxygen concentrator[J]. Adsorption-Journal of the International Adsorption Society, 2012, 18(2): 87-102. |
20 | VemulaR R, KothareM V, SircarS. Performance of a medical oxygen concentrator using rapid pressure swing adsorption process: Effect of feed air pressure[J]. AIChE Journal, 2016, 62(4): 1212-1215. |
21 | ZhuX Q, LiuY S, YangX, et al. Study of a novel rapid vacuum pressure swing adsorption process with intermediate gas pressurization for producing oxygen[J]. Adsorption-Journal of the International Adsorption Society, 2016, 23(1): 1-10. |
22 | 祝显强, 刘应书, 焦璐璐, 等. 快速真空变压吸附制氧的排放气充压过程研究[J]. 北京科技大学学报, 2015, 37(11): 1513-1519. |
ZhuX Q, LiuY S, JiaoL L, et al. Study on pressurization with raffinate in a rapid vacuum pressure swing adsorption process for producing oxygen [J]. Journal of University of Science and Technology Beijing, 2015, 37(11): 1513-1519. | |
23 | 祝显强, 刘应书, 杨雄, 等. 吸附及解吸压力对快速变压吸附床内速度及循环性能的影响[J]. 北京科技大学学报, 2016, 38(7): 993-1001. |
ZhuX Q, LiuY S, YangX, et al. Effect of adsorption and desorption pressure on the velocity and cycling performance of rapid pressure swing adsorption[J]. Journal of University of Science and Technology Beijing, 2016, 38(7): 993-1001. | |
24 | 杨彦钢, 丁艳宾, 马正飞, 等. 不同均压方式对PSA和VSA空分制氧过程的影响[J]. 南京工业大学学报(自科科学版), 2012, 34(4): 79-83. |
YangY G, DingY B, MaZ F, et al. Effects of different pressure equalization methods on PSA and VSA processes for O2 production from air[J]. Journal of Nanjing University of Technology(Natural Science Edition), 2012, 34(4): 79-83. | |
25 | 周圆圆, 韦向攀, 张东辉. 三塔真空变压吸附富氧工艺过程模拟[J]. 化工进展, 2011, 30(S2): 263-267. |
ZhouY Y, WeiX P, ZhangD H. Simulation of three-bed VPSA oxygen enrichment process[J]. Chemical Industry and Engineering Progress, 2011, 30(S2): 263-267. | |
26 | KavithaT, KaliappanS. Equilibrium isotherms of methane onto activated carbons using a static volumetric method[J]. J. Environ. Sci. Eng., 2009, 51(3): 219-222. |
27 | 丁兆阳, 韩治洋, 石文荣, 等. 快速变压吸附制氧动态传质系数模拟分析[J]. 化工学报, 2018, 69(2): 759-768. |
DingZ Y, HanZ Y, ShiW R, et al. Analysis of dynamic effective mass transfer coefficients of rapid pressure swing adsorption process for oxygen production[J]. CIESC Journal, 2018, 69(2): 759-768. | |
28 | LiD D, ZhouY, ShenY H, et al. Experiment and simulation for separating CO2 /N2, by dual-reflux pressure swing adsorption process[J]. Chemical Engineering Journal, 2016, 297: 315-324. |
29 | 周言, 沈圆辉, 付强, 等. 真空变压吸附分离CH4/N2/O2实验、模拟与安评[J]. 化工学报, 2017, 68(2): 723-731. |
ZhouY, ShenY H, FuQ, et al. Experiment, simulation and safety evaluation of vacuum pressure swing adsorption for CH4/N2/O2 separation[J]. CIESC Journal, 2017, 68(2): 723-731. | |
30 | YangH W, YinC B, JiangB, et al. Optimization and analysis of a VPSA process for N2/CH4, separation[J]. Separation & Purification Technology, 2014, 134(1): 232-240. |
31 | BrandaniF, RouseA, BrandaniS, et al. Adsorption kinetics and dynamic behavior of a carbon monolith[J]. Adsorption-Journal of the International Adsorption Society, 2004, 10(2): 99-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||