CIESC Journal ›› 2024, Vol. 75 ›› Issue (12): 4501-4512.DOI: 10.11949/0438-1157.20240604
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Bin WANG1,2,3,4(), Juanwen CHEN2,3,4(
), Wenbo HUANG2,3,4, Pengfei DANG1, Fangming JIANG2,3,4(
)
Received:
2024-06-03
Revised:
2024-08-08
Online:
2025-01-03
Published:
2024-12-25
Contact:
Juanwen CHEN, Fangming JIANG
王宾1,2,3,4(), 陈娟雯2,3,4(
), 黄文博2,3,4, 党鹏飞1, 蒋方明2,3,4(
)
通讯作者:
陈娟雯,蒋方明
作者简介:
王宾(1998—),男,硕士,a626954940@163.com
基金资助:
CLC Number:
Bin WANG, Juanwen CHEN, Wenbo HUANG, Pengfei DANG, Fangming JIANG. Start-up characteristics of super-long gravity heat pipe[J]. CIESC Journal, 2024, 75(12): 4501-4512.
王宾, 陈娟雯, 黄文博, 党鹏飞, 蒋方明. 超长重力热管启动特性[J]. 化工学报, 2024, 75(12): 4501-4512.
实验参数 | 实验范围 |
---|---|
工质 | 去离子水 |
蒸发段长度Le/m | 8~20 |
绝热段长度La/m | 15~27 |
冷凝段长度Lc/m | 5 |
加热功率Qin/W | 100~500 |
注液高度FH/m | 3~15 |
注液率FR/% | 15~75 |
冷却水流量vc/(g·s-1) | 3 |
冷却水入口温度Tin/℃ | 20 |
Table 1 Experimental operating condition
实验参数 | 实验范围 |
---|---|
工质 | 去离子水 |
蒸发段长度Le/m | 8~20 |
绝热段长度La/m | 15~27 |
冷凝段长度Lc/m | 5 |
加热功率Qin/W | 100~500 |
注液高度FH/m | 3~15 |
注液率FR/% | 15~75 |
冷却水流量vc/(g·s-1) | 3 |
冷却水入口温度Tin/℃ | 20 |
Fig.11 Effect of evaporation section length on start-up time and start-up temperature of the super-long gravity heat pipe under different fill heights (Qin =300 W)
1 | Zhu J L, Hu K Y, Lu X L, et al. A review of geothermal energy resources, development, and applications in China: current status and prospects[J]. Energy, 2015, 93: 466-483. |
2 | Moya D, Aldás C, Kaparaju P. Geothermal energy: power plant technology and direct heat applications[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 889-901. |
3 | Anand R S, Li A, Huang W B, et al. Super-long gravity heat pipe for geothermal energy exploitation—a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2024, 193: 114286. |
4 | Tomasini-Montenegro C, Santoyo-Castelazo E, Gujba H, et al. Life cycle assessment of geothermal power generation technologies: an updated review[J]. Applied Thermal Engineering, 2017, 114: 1119-1136. |
5 | Gao T Y, Long X T, Xie H P, et al. A review of advances and applications of geothermal energy extraction using a gravity-assisted heat pipe[J]. Geothermics, 2024, 116: 102856. |
6 | Kusaba S, Suzuki H, Hirowatari K, et al. Extraction of geothermal energy and electric power generation using a large scale heat pipe[C]//Proceedings World Geothermal Congress. Kyushu-Tohoku, Japan, 2000: 3489-3494. |
7 | Huang W B, Cao W J, Jiang F M. A novel single-well geothermal system for hot dry rock geothermal energy exploitation[J]. Energy, 2018, 162: 630-644. |
8 | Huang W B, Cen J W, Chen J W, et al. Heat extraction from hot dry rock by super-long gravity heat pipe: a field test[J]. Energy, 2022, 247: 123492. |
9 | Liu H, Wang X Y, Zheng L Y, et al. Temperature response and thermal performance analysis of a super-long flexible thermosyphon for shallow geothermal utilization: field test and numerical simulation[J]. International Journal of Heat and Mass Transfer, 2022, 192: 122915. |
10 | Wang X Y, Yao H C, Li J, et al. Experimental and numerical investigation on heat transfer characteristics of ammonia thermosyhpons at shallow geothermal temperature[J]. International Journal of Heat and Mass Transfer, 2019, 136: 1147-1159. |
11 | Abreu S L, Colle S. An experimental study of two-phase closed thermosyphons for compact solar domestic hot-water systems[J]. Solar Energy, 2004, 76(1/2/3): 141-145. |
12 | Moon S H, Park Y W, Yang H M. A single unit cooling fins aluminum flat heat pipe for 100W socket type COB LED lamp[J]. Applied Thermal Engineering, 2017, 126: 1164-1169. |
13 | Tian E, He Y L, Tao W Q. Research on a new type waste heat recovery gravity heat pipe exchanger[J]. Applied Energy, 2017, 188: 586-594. |
14 | Wang Y B, Wang B, Zhu K, et al. Energy saving potential of using heat pipes for CPU cooling[J]. Applied Thermal Engineering, 2018, 143: 630-638. |
15 | Zeghari K, Louahlia H, Le Masson S. Experimental investigation of flat porous heat pipe for cooling TV box electronic chips[J]. Applied Thermal Engineering, 2019, 163: 114267. |
16 | 杨永平, 魏庆朝, 周顺华, 等. 热管技术及其在多年冻土工程中的应用研究[J]. 岩土工程学报, 2005, 27(6): 698-706. |
Yang Y P, Wei Q C, Zhou S H, et al. Thermosyphon technology and its application in permafrost[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 698-706. | |
17 | 张军, 张辉, 张红, 等. 地热热管融雪系统应用研究[J]. 太阳能学报, 2011, 32(12): 1822-1826. |
Zhang J, Zhang H, Zhang H, et al. Application study of geothermic heat pipe snow melting system[J]. Acta Energiae Solaris Sinica, 2011, 32(12): 1822-1826. | |
18 | Wang X Y, Zhu Y L, Zhu M Z, et al. Thermal analysis and optimization of an ice and snow melting system using geothermy by super-long flexible heat pipes[J]. Applied Thermal Engineering, 2017, 112: 1353-1363. |
19 | 蒋方明, 黄文博, 曹文炅. 干热岩热能的热管开采方案及其技术可行性研究[J]. 新能源进展, 2017, 5(6): 426-434. |
Jiang F M, Huang W B, Cao W J. Mining hot dry rock geothermal energy by heat pipe: conceptual design and technical feasibility study[J]. Advances in New and Renewable Energy, 2017, 5(6): 426-434. | |
20 | Cao W J, Huang W B, Jiang F M. Numerical study on variable thermophysical properties of heat transfer fluid affecting EGS heat extraction[J]. International Journal of Heat and Mass Transfer, 2016, 92: 1205-1217. |
21 | Seo J, Bang I C, Lee J Y. Length effect on entrainment limit of large-L/D vertical heat pipe[J]. International Journal of Heat and Mass Transfer, 2016, 97: 751-759. |
22 | 李庭樑, 岑继文, 黄文博, 等. 超长重力热管传热性能实验研究[J]. 化工学报, 2020, 71(3): 997-1008. |
Li T L, Cen J W, Huang W B, et al. Experimental study on heat transfer performance of super long gravity heat pipe[J]. CIESC Journal, 2020, 71(3): 997-1008. | |
23 | Wang X Y, Liu H, Wang Y F, et al. CFD simulation of dynamic heat transfer behaviors in super-long thermosyphons for shallow geothermal application[J]. Applied Thermal Engineering, 2020, 174: 115295. |
24 | Chen J W, Cen J W, Huang W B, et al. Multiphase flow and heat transfer characteristics of an extra-long gravity-assisted heat pipe: an experimental study[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120564. |
25 | Li F, Chen J W, Cen J W, et al. Two-phase flow visualization and heat transfer characteristics analysis in ultra-long gravity heat pipe[J]. Energies, 2023, 16(12): 4709. |
26 | Lin T, Quan X J, Cheng P. Experimental investigation of superlong two-phase closed thermosyphons for geothermal utilization[J]. International Journal of Thermal Sciences, 2022, 171: 107199. |
27 | Gou X, Li G Y, Zhang R C, et al. Critical and optimal inclination angles of two-phase closed thermosyphon under different operating conditions[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121540. |
28 | Yao H C, Li G, Wang Y F, et al. Visualized experiments on phase-change heat transfer of a metal “endoscopic” two-phase closed thermosyphon[J]. Experimental Thermal and Fluid Science, 2021, 124: 110365. |
29 | Xu Q, Yang G, Wang C Y, et al. Experimental study on the reinforcement of a gravity heat pipe based on a latent thermal functionally fluid[J]. Energy, 2023, 278: 127782. |
30 | Li G, Zhang Y C, Zhang G H, et al. Transient experimental and numerical study of thermosyphon under different heating fluxes and filling ratios[J]. Applied Thermal Engineering, 2024, 243: 122514. |
31 | Xing M B, Wang R X, Yu J L. The impact of gravity on the performance of pulsating heat pipe using surfactant solution[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119466. |
32 | Zhou Y, Yang H H, Liu L W, et al. Enhancement of start-up and thermal performance in pulsating heat pipe with GO/water nanofluid[J]. Powder Technology, 2021, 384: 414-422. |
[1] | Hao TANG, Dinghua HU, Qiang LI, Xuanchang ZHANG, Junjie HAN. Numerical and visualization study on dynamic behavior of bubbles in anti-acceleration double tangent arc channel [J]. CIESC Journal, 2024, 75(9): 3074-3082. |
[2] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[3] | Shaohang YAN, Tianwei LAI, Yanwu WANG, Yu HOU, Shuangtao CHEN. Visual experimental study on cavitation of R134a in micro clearance [J]. CIESC Journal, 2023, 74(3): 1054-1061. |
[4] | Zhicheng BU, Sizhuo LI, Bo JIAO, Bo WANG, Zhihua GAN. Visualization study on a nitrogen pulsating heat pipe under different condenser temperatures [J]. CIESC Journal, 2023, 74(12): 4892-4903. |
[5] | Shengwei XU, Longbo SONG, Can KANG. Effects of liquid medium on geometric and kinetic characteristics of a rising bubble [J]. CIESC Journal, 2023, 74(10): 4140-4152. |
[6] | Xiongkang SUN, Qiang LI. Research on enhanced boiling heat transfer of multilevel composite wick structure [J]. CIESC Journal, 2022, 73(3): 1127-1135. |
[7] | ZHAO Zhihu, LI Peng, WU Dongliang, ZHANG Hongbin, SUN Peijie, HUANG Yonghua. Effects of inlet supercooling and pressure on throttling behavior of liquid nitrogen [J]. CIESC Journal, 2021, 72(S1): 106-112. |
[8] | Hailiang CAO, Hongfei ZHANG, Qianlong ZUO, Qi AN, Ziyang ZHANG, Hongbei LIU. Study on pool boiling heat transfer performance of trapezoidal microchannel surface [J]. CIESC Journal, 2021, 72(8): 4111-4120. |
[9] | SHEN Chao, LIU Yujuan, WANG Zhuxuan, ZHANG Dongwei, YANG Jianzhong, WEI Xinli. Visualization experiment of two-phase flow in parallel flow heat pipe [J]. CIESC Journal, 2021, 72(5): 2506-2513. |
[10] | LI Mengyang, GAO Ming, ZUO Qirong, ZHANG Lixin, ZHAO Yugang. Visualization investigation of TBAB hydrate formation in droplets on supercooled wall surfaces [J]. CIESC Journal, 2021, 72(4): 2094-2101. |
[11] | TIAN Yongsheng, JI Wanxiang, CHEN Zengqiao, WANG Naihua. Study of transient pool boiling on vertical tube with large length-diameter ratio [J]. CIESC Journal, 2021, 72(4): 2018-2026. |
[12] | LIU Jieyu, GONG Yan, WU Xiaoxiang, GUO Qinghua, YU Guangsuo, WANG Fuchen. Visualization study on particle volatile flame opposed multi-burner impinging entrained-flow gasifier [J]. CIESC Journal, 2021, 72(3): 1275-1282. |
[13] | Kuan YANG, Changqi YAN, Xiaxin CAO. Subcooled flow boiling resistance characteristics in narrow rectangular channel under natural circulation condition [J]. CIESC Journal, 2020, 71(7): 3060-3070. |
[14] | Huiru WANG, Zhenyu LIU, Yuanpeng YAO, Huiying WU. Visualized experiment on solid-liquid phase change heat transfer enhancement with multiple PCMs [J]. CIESC Journal, 2019, 70(4): 1263-1271. |
[15] | Pan WEI, Jiabang YU, Zengxu GUO, Xiaohu YANG, Yaling HE. Experimental visualization on thermal energy storage enhancement through metal foam filled annuli [J]. CIESC Journal, 2019, 70(3): 850-856. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 641
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 232
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||