CIESC Journal ›› 2024, Vol. 75 ›› Issue (12): 4490-4500.DOI: 10.11949/0438-1157.20240552
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Liang ZHAO(), Mengyan ZHANG, Zhenglong GUO, Yali GUO, Luyuan GONG(
), Shengqiang SHEN
Received:
2024-05-26
Revised:
2024-06-26
Online:
2025-01-03
Published:
2024-12-25
Contact:
Luyuan GONG
赵亮(), 张梦妍, 果正龙, 郭亚丽, 龚路远(
), 沈胜强
通讯作者:
龚路远
作者简介:
赵亮(1979—),男,博士,副教授,zlhmf@dlut.edu.cn
基金资助:
CLC Number:
Liang ZHAO, Mengyan ZHANG, Zhenglong GUO, Yali GUO, Luyuan GONG, Shengqiang SHEN. Droplet distribution characteristics of dropwise condensation[J]. CIESC Journal, 2024, 75(12): 4490-4500.
赵亮, 张梦妍, 果正龙, 郭亚丽, 龚路远, 沈胜强. 滴状冷凝的液滴分布特性[J]. 化工学报, 2024, 75(12): 4490-4500.
冷凝工况及表面性质 | 数值 |
---|---|
表面过冷度ΔT/K | 1 |
水蒸气饱和温度Tsat/K | 359.08 |
表面张力系数σ/(N·m-1) | 0.0616 |
冷凝水密度ρ/(kg·m-3) | 968 |
冷凝水潜热Hfg/(J·kg-1) | 2.293×106 |
疏水涂层厚度δ/mm | 0.01 |
水热导率kw/(W·m-1·K-1) | 0.6707 |
气液界面传热系数hi/(W·m-2·K-1) | 106 |
疏水膜热导率kδ/(W·m-1·K-1) | 1000 |
Table 1 Basic parameters of simulation
冷凝工况及表面性质 | 数值 |
---|---|
表面过冷度ΔT/K | 1 |
水蒸气饱和温度Tsat/K | 359.08 |
表面张力系数σ/(N·m-1) | 0.0616 |
冷凝水密度ρ/(kg·m-3) | 968 |
冷凝水潜热Hfg/(J·kg-1) | 2.293×106 |
疏水涂层厚度δ/mm | 0.01 |
水热导率kw/(W·m-1·K-1) | 0.6707 |
气液界面传热系数hi/(W·m-2·K-1) | 106 |
疏水膜热导率kδ/(W·m-1·K-1) | 1000 |
Fig.7 Maximum droplet positional distribution during evolution of dropwise condensation with different condensation nuclei densities (a) and coordinate change (b)
Fig.11 Spatial distribution, size change and heat transfer characteristics of the largest droplet during the evolution of dropwise condensation on different walls
1 | 唐桂华, 胡浩威, 牛东, 等. 蒸汽珠状冷凝传热的研究进展[J]. 科学通报, 2020, 65(17): 1653-1676. |
Tang G H, Hu H W, Niu D, et al. Advances in vapor dropwise condensation heat transfer[J]. Chinese Science Bulletin, 2020, 65(17): 1653-1676. | |
2 | Rose J W. Dropwise condensation theory and experiment: a review[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2002, 216(2): 115-128. |
3 | 陈宁光, 甘云华. 基于格子Boltzmann方法的荷电液滴蒸发及传热研究[J]. 化工学报, 2023, 74(12): 4829-4839. |
Chen N G, Gan Y H. Study on evaporation and heat transfer of charged sessile droplet based on lattice Boltzmann method[J]. CIESC Journal, 2023, 74(12): 4829-4839. | |
4 | Lo C W, Wang C C, Lu M C. Spatial control of heterogeneous nucleation on the superhydrophobic nanowire array[J]. Advanced Functional Materials, 2014, 24(9): 1211-1217. |
5 | 周兴东, 马学虎, 兰忠, 等. 滴状冷凝强化含不凝气的蒸气冷凝传热机制[J]. 化工学报, 2007, 58(7): 1619-1625. |
Zhou X D, Ma X H, Lan Z, et al. Mechanism of dropwise condensation heat transfer enhancement in presence of non-condensable gas[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(7): 1619-1625. | |
6 | Ma X H, Rose J W, Xu D Q, et al. Advances in dropwise condensation heat transfer: Chinese research[J]. Chemical Engineering Journal, 2000, 78(2/3): 87-93. |
7 | Schmidt E, Schurig W, Sellschopp W. Versuche über die kondensation von wasserdampf in film- und tropfenform[J]. Technische mechanik und thermodynamik, 1930, 1: 53–63. |
8 | Gose E E, Mucciardi A N, Baer E. Model for dropwise condensation on randomly distributed sites[J]. International Journal of Heat and Mass Transfer, 1967, 10(1): 15-22. |
9 | Chen J C. Surface contact—its significance for multiphase heat transfer: diverse examples[J]. Journal of Heat Transfer, 2003, 125(4): 549-566. |
10 | Rose J W, Glicksman L R. Dropwise condensation—the distribution of drop sizes[J]. International Journal of Heat and Mass Transfer, 1973, 16(2): 411-425. |
11 | Tanaka H. A theoretical study of dropwise condensation[J]. Journal of Heat Transfer, 1975, 97(1): 72-78. |
12 | Kim S, Kim K J. Dropwise condensation modeling suitable for superhydrophobic surfaces[J]. Journal of Heat Transfer, 2011, 133(8): 081502. |
13 | Graham C, Griffith P. Drop size distributions and heat transfer in dropwise condensation[J]. International Journal of Heat and Mass Transfer, 1973, 16(2): 337-346. |
14 | Xie J, Xu J L, Shang W, et al. Dropwise condensation on superhydrophobic nanostructure surface, part Ⅱ: Mathematical model[J]. International Journal of Heat and Mass Transfer, 2018, 127: 1170-1187. |
15 | Grooten M H M, van der Geld C W M. Surface property effects on dropwise condensation heat transfer from flowing air-steam mixtures to promote drainage[J]. International Journal of Thermal Sciences, 2012, 54: 220-229. |
16 | 赵崇岩, 颜笑, 黄志勇, 等. 滴状凝结全过程液滴尺寸分布数值模拟[J]. 工程热物理学报, 2020, 41(6): 1485-1490. |
Zhao C Y, Yan X, Huang Z Y, et al. Numerical simulation of droplet size distribution in the whole process of dropwise condensation[J]. Journal of Engineering Thermophysics, 2020, 41(6): 1485-1490. | |
17 | Peng B L, Ma X H, Lan Z, et al. Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface: droplet sizes effect[J]. International Journal of Heat and Mass Transfer, 2014, 77: 785-794. |
18 | Peng B L, Ma X H, Lan Z, et al. Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 83: 27-38. |
19 | 刘天庆, 穆春丰, 夏松柏, 等. 滴状冷凝初始液滴的形成机理[J]. 化工学报, 2007, 58(4): 821-828. |
Liu T Q, Mu C F, Xia S B, et al. Mechanism of initial droplet formation in dropwise condensation[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(4): 821-828. | |
20 | Glicksman L R, Hunt A W. Numerical simulation of dropwise condensation[J]. International Journal of Heat and Mass Transfer, 1972, 15(11): 2251-2269. |
21 | 赵崇岩, 陈凤, 闫贺, 等. 超疏水表面弹跳凝结液滴尺寸分布模拟[J]. 工程热物理学报, 2020, 41(11): 2782-2787. |
Zhao C Y, Chen F, Yan H, et al. Numerical simulation of droplet size distribution for jumping condensation on the superhydrophobic surface[J]. Journal of Engineering Thermophysics, 2020, 41(11): 2782-2787. | |
22 | Miljkovic N, Enright R, Wang E N. Modeling and optimization of superhydrophobic condensation[J]. Journal of Heat Transfer, 2013, 135(11): 111004. |
23 | Shang Y H, Hou Y M, Yu M, et al. Modeling and optimization of condensation heat transfer at biphilic interface[J]. International Journal of Heat and Mass Transfer, 2018, 122: 117-127. |
24 | Abu-Orabi M. Modeling of heat transfer in dropwise condensation[J]. International Journal of Heat and Mass Transfer, 1998, 41(1): 81-87. |
25 | Farokhirad S, Morris J F, Lee T. Coalescence-induced jumping of droplet: inertia and viscosity effects[J]. Physics of Fluids, 2015, 27(10): 102102. |
26 | Xu W, Lan Z, Liu Q C, et al. Droplet size distributions in dropwise condensation heat transfer: consideration of droplet overlapping and multiple re-nucleation[J]. International Journal of Heat and Mass Transfer, 2018, 127: 44-54. |
27 | Sikarwar B S, Khandekar S, Agrawal S, et al. Dropwise condensation studies on multiple scales[J]. Heat Transfer Engineering, 2012, 33(4/5): 301-341. |
28 | Burnside B M, Hadi H A. Digital computer simulation of dropwise condensation from equilibrium droplet to detectable size[J]. International Journal of Heat and Mass Transfer, 1999, 42(16): 3137-3146. |
29 | Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
30 | 齐宝金, 张莉, 徐宏, 等. 引入接触角的滴状冷凝分形传热功当量模型[J]. 高校化学工程学报, 2011, 25(5): 751-758. |
Qi B J, Zhang L, Xu H, et al. Contact angle affected fractal model of dropwise condensation heat transfer[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(5): 751-758. | |
31 | Bahal S, Sharma C S. Modeling dropwise condensation on hydrophobic microgrooved surface[J]. Langmuir, 2023, 39(50): 18486-18498. |
[1] | Guanyu REN, Yifei ZHANG, Xinze LI, Wenjing DU. Numerical study on flow and heat transfer characteristics of airfoil printed circuit heat exchangers [J]. CIESC Journal, 2024, 75(S1): 108-117. |
[2] | Xinze LI, Shuangxing ZHANG, Guanyu REN, Rui HONG, Wenjing DU. Thermal performance of pulsating heat pipe for high power LED thermal management [J]. CIESC Journal, 2024, 75(S1): 126-134. |
[3] | Yong YANG, Zixuan ZU, Yukun LI, Dongliang WANG, Zongliang FAN, Huairong ZHOU. Numerical simulation of CO2 absorption by alkali liquor in T-junction cylindrical microchannels [J]. CIESC Journal, 2024, 75(S1): 135-142. |
[4] | Junhao HUANG, Keliang PANG, Fangyuan SUN, Fujun LIU, Zhiyuan GU, Long HAN, Yanquan DUAN, Yanhui FENG. Influence of bell structure of coke dry quenching furnace on coke distribution [J]. CIESC Journal, 2024, 75(S1): 158-169. |
[5] | Xinyu DONG, Longfei BIAN, Yiyi YANG, Yuxuan ZHANG, Lu LIU, Teng WANG. Study on flow and heat transfer mechanism of supercritical CO2 in inclined upward tube under cooling conditions [J]. CIESC Journal, 2024, 75(S1): 195-205. |
[6] | Qirui GUO, Liyuan REN, Kang CHEN, Xiangyu HUANG, Weihua MA, Leqin XIAO, Weiliang ZHOU. Numerical simulation of static mixing tubes for HTPB propellant slurry [J]. CIESC Journal, 2024, 75(S1): 206-216. |
[7] | Kuangxi LI, Peiqian YU, Jiangyun WANG, Haoran WEI, Zhigang ZHENG, Liuhai FENG. Flow analysis and structure optimization of micro-bubble swirling air flotation device [J]. CIESC Journal, 2024, 75(S1): 223-234. |
[8] | Su TANG, Zi'ao ZHENG, Hanze WEI, Xiaoling XU, Xiaoqiang ZHAI. Preparation and thermal conductivity reinforcement of PMMA/PEG600/CNT composite shaped phase change materials [J]. CIESC Journal, 2024, 75(S1): 309-320. |
[9] | Zhangzhou WANG, Tianqi TANG, Jiajun XIA, Yurong HE. Battery thermal management performance simulation based on composite phase change material [J]. CIESC Journal, 2024, 75(S1): 329-338. |
[10] | Siyu QIN, Yijia LIU, Jiacheng YANG, Wei TONG, Liwen JIN, Xiangzhao MENG. Characteristics of gas-liquid two-phase heat transfer in a confined vapor chamber [J]. CIESC Journal, 2024, 75(S1): 47-55. |
[11] | Jian HU, Jinghua JIANG, Shengjun FAN, Jianhao LIU, Haijiang ZOU, Wanlong CAI, Fenghao WANG. Research on heat extraction performance of deep U-type borehole heat exchanger [J]. CIESC Journal, 2024, 75(S1): 76-84. |
[12] | Dehui DU, Wei FENG, Jianghui ZHANG, Yanlong XIANG, Gaopan QIAO, Wei LI. Prediction model of flow boiling heat transfer in microfinned hydrophobic composite enhanced tube [J]. CIESC Journal, 2024, 75(S1): 95-107. |
[13] | Shuyue LI, Huan WANG, Shaoqiang ZHOU, Zhihong MAO, Yongmin ZHANG, Junwu WANG, Xiuhua WU. Numerical simulation of hydrogen reduction of U3O8 in fluidized bed reactors using CPFD method [J]. CIESC Journal, 2024, 75(9): 3133-3151. |
[14] | Chaowei CHEN, Yang LIU, Wenjing DU, Jinbo LI, Dakuo SHI, Gongming XIN. Flow and heat transfer characteristics of micro ribs channel with local hot spots [J]. CIESC Journal, 2024, 75(9): 3113-3121. |
[15] | Juhui CHEN, Tong SU, Dan LI, Liwei CHEN, Wensheng LYU, Fanqi MENG. Study on the heat transfer characteristics of microchannels under the action of fin-shaped spoilers [J]. CIESC Journal, 2024, 75(9): 3122-3132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||