CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1263-1271.DOI: 10.11949/j.issn.0438-1157.20180936
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Huiru WANG(),Zhenyu LIU,Yuanpeng YAO,Huiying WU()
Received:
2018-08-20
Revised:
2019-01-29
Online:
2019-04-05
Published:
2019-04-05
Contact:
Huiying WU
通讯作者:
吴慧英
作者简介:
<named-content content-type="corresp-name">王慧儒</named-content>(1981—),女,博士研究生,<email>wanghrfy@163.com</email>|吴慧英(1967—),女,博士,教授,<email>whysrj@sjtu.edu.cn</email>
基金资助:
CLC Number:
Huiru WANG, Zhenyu LIU, Yuanpeng YAO, Huiying WU. Visualized experiment on solid-liquid phase change heat transfer enhancement with multiple PCMs[J]. CIESC Journal, 2019, 70(4): 1263-1271.
王慧儒, 刘振宇, 姚元鹏, 吴慧英. 组合相变材料强化固液相变传热可视化实验[J]. 化工学报, 2019, 70(4): 1263-1271.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180936
热物性参数 | RT65 | RT42 | RT27 |
---|---|---|---|
相变温度T m/℃ | 63.2 | 43.4 | 28.8 |
潜热h sf /(kJ·kg-1) | 172.0 | 148.2 | 154.3 |
比热容cp /(kJ·kg-1·K-1) | |||
固体 | 2.90 | 3.02 | 3.44 |
液体 | 2.50 | 2.33 | 2.53 |
密度ρ /(kg?m-3) | |||
固体 | 870 | 880 | 870 |
液体 | 760 | 760 | 740 |
热导率λ/(W?m-1?K-1) | |||
固体 | 0.23 | 0.24 | 0.23 |
液体 | 0.17 | 0.17 | 0.16 |
Table 1 Thermophysical properties of paraffins
热物性参数 | RT65 | RT42 | RT27 |
---|---|---|---|
相变温度T m/℃ | 63.2 | 43.4 | 28.8 |
潜热h sf /(kJ·kg-1) | 172.0 | 148.2 | 154.3 |
比热容cp /(kJ·kg-1·K-1) | |||
固体 | 2.90 | 3.02 | 3.44 |
液体 | 2.50 | 2.33 | 2.53 |
密度ρ /(kg?m-3) | |||
固体 | 870 | 880 | 870 |
液体 | 760 | 760 | 740 |
热导率λ/(W?m-1?K-1) | |||
固体 | 0.23 | 0.24 | 0.23 |
液体 | 0.17 | 0.17 | 0.16 |
编号 | 单一/组合相变材料 | PCM 1# | PCM 2# | PCM 3# |
---|---|---|---|---|
1# | RT27 | RT27 | RT27 | RT27 |
2# | RT42 | RT42 | RT42 | RT42 |
3# | RT65 | RT65 | RT65 | RT65 |
4# | RT65–RT42–RT27 | RT65 | RT42 | RT27 |
5# | RT65–RT27–RT42 | RT65 | RT27 | RT42 |
6# | RT42–RT65–RT27 | RT42 | RT65 | RT27 |
7# | RT42–RT27–RT65 | RT42 | RT27 | RT65 |
8# | RT27–RT42–RT65 | RT27 | RT42 | RT65 |
9# | RT27–RT65–RT42 | RT27 | RT65 | RT42 |
Table 2 Arrangement of paraffins for single-PCM and multiple-PCM TES containers
编号 | 单一/组合相变材料 | PCM 1# | PCM 2# | PCM 3# |
---|---|---|---|---|
1# | RT27 | RT27 | RT27 | RT27 |
2# | RT42 | RT42 | RT42 | RT42 |
3# | RT65 | RT65 | RT65 | RT65 |
4# | RT65–RT42–RT27 | RT65 | RT42 | RT27 |
5# | RT65–RT27–RT42 | RT65 | RT27 | RT42 |
6# | RT42–RT65–RT27 | RT42 | RT65 | RT27 |
7# | RT42–RT27–RT65 | RT42 | RT27 | RT65 |
8# | RT27–RT42–RT65 | RT27 | RT42 | RT65 |
9# | RT27–RT65–RT42 | RT27 | RT65 | RT42 |
1 | Lin Y , Jia Y , Alva G , et al . Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2730-2742. |
2 | Dhaidan N S , Khodadadi J M , Al-Hattab T A , et al . Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity[J]. International Journal of Heat and Mass Transfer, 2013, 67: 455-468. |
3 | 施尚, 余建祖, 陈梦东, 等 . 基于泡沫铜/石蜡的锂电池热管理系统性能[J]. 化工学报, 2017, 68(7): 2678-2683. |
Shi S , Yu J Z , Chen M D , et al . Battery thermal management system using phase change materials and foam copper[J]. CIESC Journal, 2017, 68(7): 2678-2683. | |
4 | Yao Y , Wu H , Liu Z , et al . Pore-scale visualization and measurement of paraffin melting in high porosity open-cell copper foam[J]. International Journal of Thermal Sciences, 2018, 123: 73-85. |
5 | 张鹏, 肖鑫, 王如竹, 等 . 壳管式潜热蓄能系统换热特性[J]. 化工学报, 2012, 63(S2): 14-20. |
Zhang P , Xiao X , Wang R Z , et al . Heat transfer characteristics of shell-tube latent thermal energy storage system[J]. CIESC Journal, 2012, 63(S2): 14-20. | |
6 | Jegadheeswaran S , Pohekar S D . Performance enhancement in latent heat thermal storage system: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2225-2244. |
7 | Ibrahim N I , Al-Sulaiman F A , Rahman S , et al . Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 26-50. |
8 | Farid M M . Storage of solar energy with phase change[J]. Journal of Solar Energy Research, 1986, 4: 11-29. |
9 | Farid M M , Kanzawa A . Thermal performance of a heat storage module using PCM's with different melting temperatures: mathematical modeling[J]. Journal of Solar Energy Engineering, 1989, 111: 152-157. |
10 | Mosaffa A H , Infante F C A , Talati F , et al . Thermal performance of a multiple PCM thermal storage unit for free cooling[J]. Energy Conversion and Management, 2013, 67: 1-7. |
11 | Mosaffa A H , Garousi F L , Infante F C A , et al . Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications[J]. Renewable Energy, 2014, 68: 452-458. |
12 | Gong Z X , Mujumdar A S . Cyclic heat transfer in a novel storage unit of multiple phase change materials[J]. Applied Thermal Engineering, 1996, 16(10): 807-815. |
13 | Fang M , Chen G . Effects of different multiple PCMs on the performance of a latent thermal energy storage system[J]. Applied Thermal Engineering, 2007, 27: 994-1000. |
14 | Seeniraj R V , Lakshmi N N . Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs[J]. Solar Energy, 2008, 82: 535-542. |
15 | Adine H A , El Q H . Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials[J]. Applied Mathematical Modelling, 2009, 33: 2132-2144. |
16 | Kurnia J C , Sasmito A P , Jangam S V , et al . Improved design for heat transfer performance of a novel phase change material (PCM) thermal energy storage (TES)[J]. Applied Thermal Engineering, 2013, 50: 896-907. |
17 | Liu M , Tay N H S , Belusko M , et al . Investigation of cascaded shell and tube latent heat storage systems for solar tower power plants[J]. Energy Procedia, 2015, 69: 913-924. |
18 | Yang L , Zhang X , Xu G . Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points[J]. Energy and Buildings, 2014, 68: 639-646. |
19 | 杨磊, 张小松 . 多熔点相变材料堆积蓄热床蓄热性能分析[J]. 化工学报, 2012, 63(4): 1032-1037. |
Yang L , Zhang X S . Charge performance of packed bed thermal storage unit with phase change material having different melting points[J]. CIESC Journal, 2012, 63(4): 1032-1037. | |
20 | Wu M , Xu C , He Y . Cyclic behaviors of the molten-salt packed-bed thermal storage system filled with cascaded phase change material capsules[J]. Applied Thermal Engineering, 2016, 93: 1061-1073. |
21 | Cui H , Yuan X , Hou X . Thermal performance analysis for a heat receiver using multiple phase change materials[J]. Applied Thermal Engineering, 2003, 23: 2353-2361. |
22 | Tao Y B , He Y L , Liu Y K , et al . Performance optimization of two-stage latent heat storage unit based on entransy theory[J]. International Journal of Heat and Mass Transfer, 2014, 77: 695-703. |
23 | 王慧儒, 吴慧英 . 最小热阻原理在组合式相变材料蓄热过程优化中的应用[J]. 科学通报, 2015, 60(34): 3377-3385. |
Wang H R , Wu H Y . Application of minimum thermal resistance principle in optimization for melting process with multiple PCMs[J]. Chinese Science Bulletin, 2015, 60(34): 3377-3385. | |
24 | Ezra M , Kozak Y , Dubovsky V , et al . Analysis and optimization of melting temperature span for a multiple-PCM latent heat thermal energy storage unit[J]. Applied Thermal Engineering, 2016, 93: 315-329. |
25 | Xu H J , Zhao C Y . Thermal efficiency analysis of the cascaded latent heat/cold storage with multi-stage heat engine model[J]. Renewable Energy, 2016, 86: 228-237. |
26 | Wang H , Liu Z , Wu H . Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array[J]. Energy, 2017, 138: 739-751. |
27 | Watanabe T , Kikuchi H , Kanzawa A . Enhancement of charging and discharging rates in a latent heat storage system by use of PCM with different melting temperatures[J]. Heat Recovery Systems and CHP, 1993, 13(1): 57-66. |
28 | Wang J , Ouyang Y , Chen G . Experimental study on charging processes of a cylindrical heat storage capsule employing multiple-phase-change materials[J]. International Journal of Energy Research, 2001, 25: 439-447. |
29 | Michels H , Pitz-Paal R . Cascaded latent heat storage for parabolic trough solar power plants[J]. Solar Energy, 2007, 81: 829-837. |
30 | Peiró G , Gasia J , Miró L , et al . Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage[J]. Renewable Energy, 2015, 83: 729-736. |
[1] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[4] | Shaohang YAN, Tianwei LAI, Yanwu WANG, Yu HOU, Shuangtao CHEN. Visual experimental study on cavitation of R134a in micro clearance [J]. CIESC Journal, 2023, 74(3): 1054-1061. |
[5] | Chaoyu SONG, Yaxuan XIONG, Jinhua ZHANG, Yuhe JIN, Chenhua YAO, Huixiang WANG, Yulong DING. Preparation and performance study of incinerated slag based shape-stable phase change composites [J]. CIESC Journal, 2022, 73(5): 2279-2287. |
[6] | Xiongkang SUN, Qiang LI. Research on enhanced boiling heat transfer of multilevel composite wick structure [J]. CIESC Journal, 2022, 73(3): 1127-1135. |
[7] | Wensong WANG, Yingying YANG, Zhoulin CHEN, Qingyu YANG, Shuaihua LI, Weidong WU. Evolution mechanism of water freezing phase interface in porous media at mesoscale [J]. CIESC Journal, 2022, 73(12): 5343-5354. |
[8] | Shulei ZHANG, Bingjie LI, Jian JIANG, Xinyu DONG, Lu LIU. Study on evaporation characteristics of sessile droplet on a convex substrate at constant temperature [J]. CIESC Journal, 2022, 73(12): 5537-5546. |
[9] | ZHAO Zhihu, LI Peng, WU Dongliang, ZHANG Hongbin, SUN Peijie, HUANG Yonghua. Effects of inlet supercooling and pressure on throttling behavior of liquid nitrogen [J]. CIESC Journal, 2021, 72(S1): 106-112. |
[10] | Hao ZHANG, Jiao WANG, Ting MA, Xinyi LI, Jun LIU, Qiuwang WANG. Experimental investigation on phase change heat transfer of paraffin composited with porous graphite under supergravity [J]. CIESC Journal, 2021, 72(9): 4523-4530. |
[11] | Hailiang CAO, Hongfei ZHANG, Qianlong ZUO, Qi AN, Ziyang ZHANG, Hongbei LIU. Study on pool boiling heat transfer performance of trapezoidal microchannel surface [J]. CIESC Journal, 2021, 72(8): 4111-4120. |
[12] | Lingshuai BU, Zhiguo QU, Hongtao XU, Man JIN. Experimental study of cooling discharging characteristics of the energy storage system filled with MPCM slurry [J]. CIESC Journal, 2021, 72(8): 4064-4072. |
[13] | XIONG Yaxuan, QIAN Xiangyao, LI Shuo, SUN Mingyuan, WANG Zhenyu, WU Yuting, XU Peng, DING Yulong, MA Chongfang. Effect of preparation methods on thermal energy storage performance and formation mechanism of molten salt nanofluids [J]. CIESC Journal, 2021, 72(5): 2857-2868. |
[14] | SHEN Chao, LIU Yujuan, WANG Zhuxuan, ZHANG Dongwei, YANG Jianzhong, WEI Xinli. Visualization experiment of two-phase flow in parallel flow heat pipe [J]. CIESC Journal, 2021, 72(5): 2506-2513. |
[15] | TIAN Yongsheng, JI Wanxiang, CHEN Zengqiao, WANG Naihua. Study of transient pool boiling on vertical tube with large length-diameter ratio [J]. CIESC Journal, 2021, 72(4): 2018-2026. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||