CIESC Journal ›› 2025, Vol. 76 ›› Issue (1): 71-80.DOI: 10.11949/0438-1157.20240680

• Thermodynamics • Previous Articles     Next Articles

Research on the phase equilibrium and depressurization phase transition characteristics of liquid ammonia-refined oil mixed system

Xin HUANG(), Yilong LI, Weidong LI, Hongxiang SHI, Pengbo YIN, Zhenchao LI, Lin TENG(), Lilong JIANG   

  1. College of Chemical Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
  • Received:2024-06-18 Revised:2024-09-21 Online:2025-02-08 Published:2025-01-25
  • Contact: Lin TENG

液氨-成品油混合体系相平衡及减压相变规律研究

黄鑫(), 李逸龙, 李卫东, 施鸿翔, 尹鹏博, 李臻超, 滕霖(), 江莉龙   

  1. 福州大学化工学院,福建 福州 350108
  • 通讯作者: 滕霖
  • 作者简介:黄鑫(1993—),男,副教授,mmfhmt_hx@163.edu.cn
  • 基金资助:
    国家重点研发计划“氢能技术”专项资助项目(2021YFB4000403);国家自然科学基金创新研究群体项目(22221005);国家自然科学基金重点项目(22038002);国家自然科学基金青年科学基金项目(52204073);福建省自然科学基金项目(2022J05130)

Abstract:

Ammonia, as an efficient hydrogen storage carrier, has great potential to replace fossil fuel energy. The use of refined oil pipelines to increase the infusion of liquid ammonia can make full use of the pipeline capacity and save transportation costs. The phase equilibrium problem of the liquid ammonia-refined oil blend system is of great significance to the pipeline transportation process, and the decompression process will cause more complex phase change problems. In this paper, the effects of ammonia/oil ratio and moisture content on the phase equilibrium and decompression phase change of the liquid ammonia-refined oil mixed system were clarified, the phase equilibrium pressure of the liquid ammonia-refined oil mixed system was obtained, and the phase change mechanism of the liquid ammonia-refined oil mixed system was revealed. It is found that the equilibrium vapor pressure of the ammonia-oil mixed system is less than the saturation vapor pressure of the two pure components in 0—30℃, and is greater than the saturation vapor pressure of pure liquid ammonia in -2—0℃, and reaches the maximum value when the oil volume ratio is 0.3. At the same time, the presence of moisture reduces the equilibrium vapor pressure of the ammonia-oil mixture. The ammonia-oil anhydrous mixed system will produce bubbles during the decompression process. The lower the pressure, the more bubbles there are, and the more intense the foaming behavior. The aqueous liquid ammonia-oil mixing system generates droplet clusters during decompression, which slowly become larger and aggregate, and form large droplets that remain at the bottom at the end of decompression. The above research results have important theoretical guiding significance for the development and application of ammonia infusion technology in refined oil pipelines.

Key words: liquid ammonia, refined oil, phase equilibrium, phase transition

摘要:

氨作为高效的储氢载体,具有替代化石燃料能源的巨大潜力。利用成品油管道增输液氨,可充分利用管道运能,节约输送成本。液氨-成品油混合体系的相平衡问题对于管输工艺具有重要意义,此外减压过程会引起更为复杂的相变问题。针对液氨-成品油混合体系进行实验研究,初步阐述了氨/油(体积比)和含水率对液氨-成品油混合体系相平衡和减压相变的影响规律,得到了液氨-成品油混合体系的相平衡压力,揭示了液氨-成品油混合体系减压过程的相变现象。研究发现,在0~30℃,氨-油混合体系的平衡蒸气压小于两种纯组分的饱和蒸气压,而在-2~0℃大于纯液氨的饱和蒸气压,并在氨/油(体积比)为70∶30时达到最大值。同时水分的存在会降低氨-油混合体系的平衡蒸气压。氨-油无水混合体系在减压过程中会产生气泡,压力越低气泡增多,发泡行为越剧烈。含水液氨-成品油混合体系在减压过程中会产生液滴群,并慢慢变大且聚并,在减压结束后聚并形成大液滴留在底部。上述研究成果对成品油管道增输液氨技术发展和应用具有重要的理论指导意义。

关键词: 液氨, 成品油, 相平衡, 相变

CLC Number: