CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 1843-1854.DOI: 10.11949/0438-1157.20240144
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Xinzhe PEI1(), Zhuxing SUN2, Yuxiang LIN1, Chaoyang ZHANG1, Yong QIAN1(), Xingcai LYU1
Received:
2024-01-31
Revised:
2024-02-26
Online:
2024-06-25
Published:
2024-05-25
Contact:
Yong QIAN
裴欣哲1(), 孙朱行2, 林钰翔1, 张朝阳1, 钱勇1(), 吕兴才1
通讯作者:
钱勇
作者简介:
裴欣哲(1998—),男,硕士研究生,xinzhepei1998@sjtu.edu.cn
基金资助:
CLC Number:
Xinzhe PEI, Zhuxing SUN, Yuxiang LIN, Chaoyang ZHANG, Yong QIAN, Xingcai LYU. Study of anode materials for electrocatalytic decomposition of liquid ammonia[J]. CIESC Journal, 2024, 75(5): 1843-1854.
裴欣哲, 孙朱行, 林钰翔, 张朝阳, 钱勇, 吕兴才. 电催化分解液氨阳极材料的研究[J]. 化工学报, 2024, 75(5): 1843-1854.
Add to citation manager EndNote|Ris|BibTeX
等效电路拟合元件 | Fe | 304不锈钢 | Mo | V | 碳纸 | Ti |
---|---|---|---|---|---|---|
Rs/Ω | 1.407 | 1.094 | 1.42 | 1.54 | 2.33 | 1.24 |
Rp1/Ω | 33710 | 2750 | 13285 | 37633 | 48838 | 11.57 |
CPE1-T | 3.87×10-4 | 1.11×10-3 | 1.21×10-3 | 6.9×10-4 | 5.43×10-4 | 1.9×10-4 |
CPE1-P | 0.917 | 1.027 | 1.033 | 0.847 | 0.959 | 0.915 |
Rp2/Ω | 126680 | 45000 | 72772 | 147550 | ||
CPE2-T | 3.06×10-4 | 3.02×10-4 | 4.2×10-4 | 1.5×10-4 | ||
CPE2-P | 0.816 | 0.761 | 0.812 | 0.893 |
Table 1 EIS test equivalent circuit fitting results
等效电路拟合元件 | Fe | 304不锈钢 | Mo | V | 碳纸 | Ti |
---|---|---|---|---|---|---|
Rs/Ω | 1.407 | 1.094 | 1.42 | 1.54 | 2.33 | 1.24 |
Rp1/Ω | 33710 | 2750 | 13285 | 37633 | 48838 | 11.57 |
CPE1-T | 3.87×10-4 | 1.11×10-3 | 1.21×10-3 | 6.9×10-4 | 5.43×10-4 | 1.9×10-4 |
CPE1-P | 0.917 | 1.027 | 1.033 | 0.847 | 0.959 | 0.915 |
Rp2/Ω | 126680 | 45000 | 72772 | 147550 | ||
CPE2-T | 3.06×10-4 | 3.02×10-4 | 4.2×10-4 | 1.5×10-4 | ||
CPE2-P | 0.816 | 0.761 | 0.812 | 0.893 |
1 | Zhao Y, Setzler B P, Wang J H, et al. An efficient direct ammonia fuel cell for affordable carbon-neutral transportation[J]. Joule, 2019, 3(10): 2472-2484. |
2 | Cai Z H, Huang M M, Wei G F, et al. Numerical study of the effect of pressure on the combustion characteristics of ammonia/coal-derived syngas mixture under gas turbine operating conditions[J]. Fuel, 2023, 347: 128463. |
3 | Mi S J, Wu H Q, Pei X Z, et al. Potential of ammonia energy fraction and diesel pilot-injection strategy on improving combustion and emission performance in an ammonia-diesel dual fuel engine[J]. Fuel, 2023, 343: 127889. |
4 | Lhuillier C, Brequigny P, Contino F, et al. Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions[J]. Fuel, 2020, 269: 117448. |
5 | Oh S, Park C, Kim S, et al. Natural gas-ammonia dual-fuel combustion in spark-ignited engine with various air-fuel ratios and split ratios of ammonia under part load condition[J]. Fuel, 2021, 290: 120095. |
6 | Mercier A, Mounaïm-Rousselle C, Brequigny P, et al. Improvement of SI engine combustion with ammonia as fuel: effect of ammonia dissociation prior to combustion[J]. Fuel Communications, 2022, 11: 100058. |
7 | Giddey S, Badwal S P S, Munnings C, et al. Ammonia as a renewable energy transportation media[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10231-10239. |
8 | Mukherjee S, Devaguptapu S V, Sviripa A, et al. Low-temperature ammonia decomposition catalysts for hydrogen generation[J]. Applied Catalysis B: Environmental, 2018, 226: 162-181. |
9 | Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892. |
10 | Valera-Medina A, Xiao H, Owen-Jones M, et al. Ammonia for power[J]. Progress in Energy and Combustion Science, 2018, 69: 63-102. |
11 | Ouyang L, Liang J, Luo Y S, et al. Recent advances in electrocatalytic ammonia synthesis[J]. Chinese Journal of Catalysis, 2023, 50: 6-44. |
12 | Najafian A, Cundari T R. Computational mechanistic study of electro-oxidation of ammonia to N2 by homogenous ruthenium and iron complexes[J]. The Journal of Physical Chemistry A, 2019, 123(37): 7973-7982. |
13 | Lucentini I, Garcia X, Vendrell X, et al. Review of the decomposition of ammonia to generate hydrogen[J]. Industrial & Engineering Chemistry Research, 2021, 60(51): 18560-18611. |
14 | Liu H Y, Lant H M C, Cody C C, et al. Electrochemical ammonia oxidation with molecular catalysts[J]. ACS Catalysis, 2023, 13(7): 4675-4682. |
15 | Katsounaros I, Figueiredo M C, Calle-Vallejo F, et al. On the mechanism of the electrochemical conversion of ammonia to dinitrogen on Pt(1 0 0) in alkaline environment[J]. Journal of Catalysis, 2018, 359: 82-91. |
16 | Xu W, Du D W, Lan R, et al. Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia[J]. Applied Catalysis B: Environmental, 2018, 237: 1101-1109. |
17 | Sacré N, Duca M, Garbarino S, et al. Tuning Pt-Ir interactions for NH3 electrocatalysis[J]. ACS Catalysis, 2018, 8(3): 2508-2518. |
18 | Keener M, Peterson M, Hernández Sánchez D R, et al. Towards catalytic ammonia oxidation to dinitrogen: a synthetic cycle by using a simple manganese complex[J]. Chemistry-A European Journal, 2017, 23(48): 11479-11484. |
19 | Habibzadeh F, Miller S L, Hamann T W, et al. Homogeneous electrocatalytic oxidation of ammonia to N2 under mild conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(8): 2849-2853. |
20 | Nakajima K, Toda H, Sakata K, et al. Ruthenium-catalysed oxidative conversion of ammonia into dinitrogen[J]. Nature Chemistry, 2019, 11: 702-709. |
21 | Bhattacharya P, Heiden Z M, Chambers G M, et al. Catalytic ammonia oxidation to dinitrogen by hydrogen atom abstraction[J]. Angewandte Chemie (International Ed. in English), 2019, 58(34): 11618-11624. |
22 | Ahmed M E, Raghibi Boroujeni M, Ghosh P, et al. Electrocatalytic ammonia oxidation by a low-coordinate copper complex[J]. Journal of the American Chemical Society, 2022, 144(46): 21136-21145. |
23 | de Vooys A C A, Koper M T M, van Santen R A, et al. The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes[J]. Journal of Electroanalytical Chemistry, 2001, 506(2): 127-137. |
24 | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
Zhang Q, Zhao H, Rong J F. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. | |
25 | Gutmann V. Reactions in some non-aqueous ionising solvents[J]. Quarterly Reviews, Chemical Society, 1956, 10(4): 451-462. |
26 | Dong B X, Tian H, Wu Y C, et al. Improved electrolysis of liquid ammonia for hydrogen generation via ammonium salt electrolyte and Pt/Rh/Ir electrocatalysts[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14507-14518. |
27 | Goshome K, Yamada T, Miyaoka H, et al. High compressed hydrogen production via direct electrolysis of liquid ammonia[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14529-14534. |
28 | Little D J, Edwards D O, Smith M R, et al. As precious as platinum: iron nitride for electrocatalytic oxidation of liquid ammonia[J]. ACS Applied Materials & Interfaces, 2017, 9(19): 16228-16235. |
29 | Little D J, Smith I, Hamann T W. Electrolysis of liquid ammonia for hydrogen generation[J]. Energy & Environmental Science, 2015, 8(9): 2775-2781. |
30 | Akagi N, Hori K, Sugime H, et al. Systematic investigation of anode catalysts for liquid ammonia electrolysis[J]. Journal of Catalysis, 2022, 406: 222-230. |
31 | Wan T H, Saccoccio M, Chen C, et al. Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools[J]. Electrochimica Acta, 2015, 184: 483-499. |
32 | Ciucci F, Chen C. Analysis of electrochemical impedance spectroscopy data using the distribution of relaxation times: a Bayesian and hierarchical Bayesian approach[J]. Electrochimica Acta, 2015, 167: 439-454. |
33 | Effat M B, Ciucci F. Bayesian and hierarchical Bayesian based regularization for deconvolving the distribution of relaxation times from electrochemical impedance spectroscopy data[J]. Electrochimica Acta, 2017, 247: 1117-1129. |
34 | Liu J P, Wan T H, Ciucci F. A Bayesian view on the Hilbert transform and the Kramers-Kronig transform of electrochemical impedance data: probabilistic estimates and quality scores[J]. Electrochimica Acta, 2020, 357: 136864. |
35 | Vijh A K. The anodic behavior of some materials in liquid ammonia in presence and absence of methane or ethylene[J]. Journal of the Electrochemical Society, 1972, 119(7): 861. |
36 | Brown O R, Thornton S A. Kinetics of electrode reactions in liquid ammonia(part 2): FeⅢ/FeⅡ and CoⅢ/CoⅡ redox couples[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1974, 70: 14. |
37 | Heusler K E, Kutzmutz S. The nickel electrode in liquid ammonia[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 285(1/2): 93-101. |
38 | 王成. 不锈钢表面电化学处理及耐腐蚀机理研究[D]. 厦门: 厦门大学, 2018. |
Wang C. Study on the electrochemical surface modification of stainless steel and its mechanism of corrosion resistance[D].Xiamen: Xiamen University, 2018. | |
39 | 焦照临, 徐流杰, 徐照宁, 等. Al2O3掺杂钼合金的显微组织及电化学腐蚀行为研究[J]. 稀有金属与硬质合金, 2022, 50(5): 59-65, 69. |
Jiao Z L, Xu L J, Xu Z N, et al. Study on microstructure and electrochemical corrosion behavior of Al2O3 doped molybdenum alloys[J]. Rare Metals and Cemented Carbides, 2022, 50(5): 59-65, 69. | |
40 | 袁天孝. TA9合金与0Cr18Ni9钢氨环境下腐蚀过程研究[D]. 银川: 宁夏大学, 2022. |
Yuan T X. Study on corrosion process of TA9 alloy and 0Cr18Ni9 steel in ammonia environment[D].Yinchuan: Ningxia University, 2022. |
[1] | Lulu ZHAO, Erjun TANG, Xuteng XING, Shaojie LIU, Xiaomeng CHU, Na HU, Ze ZHANG. Effects of POSS modified graphene oxide in anti-corrosion and hydrophobic properties of coatings [J]. CIESC Journal, 2024, 75(5): 1977-1986. |
[2] | Yunxuan LI, Xinyue LIU, Xi CHEN, Wen LIU, Mingyue ZHOU, Xingying LAN. Energy storage technologies based on solid-liquid redox-targeting reactions: materials, devices, and kinetics [J]. CIESC Journal, 2024, 75(4): 1222-1240. |
[3] | Binbin FENG, Mingjia LU, Zhihong HUANG, Yiwen CHANG, Zhiming CUI. Application and optimization of carbon supports in proton exchange membrane fuel cells [J]. CIESC Journal, 2024, 75(4): 1469-1484. |
[4] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
[5] | Ang LI, Zhenyu ZHAO, Hong LI, Xin GAO. Microwave induced construction of highly dispersed Pd/FeP catalysts and their electrocatalytic performance [J]. CIESC Journal, 2024, 75(4): 1594-1606. |
[6] | Xi WU, Bo SUN, Yindong LIU, Chuanlei QI, Kaiyi CHEN, Luhai WANG, Chong XU, Yongfeng LI. Research progress in preparation technology of pitch-based carbon anode materials for sodium-ion batteries [J]. CIESC Journal, 2024, 75(4): 1270-1283. |
[7] | Mingze SUN, Helai HUANG, Zhiqiang NIU. Pt-based oxygen reduction reaction catalysts: from single crystal electrode to nanostructured extended surface [J]. CIESC Journal, 2024, 75(4): 1256-1269. |
[8] | Na PAN, Chang TIAN, Lankun HUAI, Yuyu LIU, Fenfen ZHANG, Xiaomei GAO, Wei LIU, Liangguo YAN, Yanxia ZHAO. Synthesis and application of polymerized Al-Ti based flocculant [J]. CIESC Journal, 2024, 75(3): 1009-1018. |
[9] | Zhipeng LIU, Changying ZHAO, Rui WU, Zhihao ZHANG. Experimental study of gas-liquid flow visualization in gradient porous transport layers based on hydrogen production by water electrolysis [J]. CIESC Journal, 2024, 75(2): 520-530. |
[10] | Yuhua YIN, Can FANG, Qingfeng YI, Guang LI. Impact of different carbon conductive agents on performance of iron-air battery [J]. CIESC Journal, 2024, 75(2): 685-694. |
[11] | Wen WEN, Huiyan WANG, Jinghong ZHOU, Yueqiang CAO, Xinggui ZHOU. Simulation study on the impact of graphite anode particles on lithium-ion battery capacity fading and SEI film growth [J]. CIESC Journal, 2024, 75(1): 366-376. |
[12] | Gang YIN, Zhongyou QIAN, Wenqi CAO, Pengcheng QUAN, Hengquan XU, Feiya YAN, Min WANG, Yu XIANG, Dongmei XIANG, Jian LU, Yuhai ZUO, Wen HE, Runting LU. Health state diagnosis of aluminum electrolytic cells based on Adaboost-PSO-SVM [J]. CIESC Journal, 2024, 75(1): 354-365. |
[13] | Yuanshuai QI, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Research progress on electrochemical desalination mechanisms and related studies [J]. CIESC Journal, 2024, 75(1): 171-189. |
[14] | Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas [J]. CIESC Journal, 2024, 75(1): 377-390. |
[15] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||