1 |
Zhang P, Cheng J H, Jin Y, et al. Evaluation of thermal physical properties of molten nitrate salts with low melting temperature[J]. Solar Energy Materials and Solar Cells, 2018, 176: 36-41.
|
2 |
Wu Y T, Li Y, Lu Y W, et al. Novel low melting point binary nitrates for thermal energy storage applications[J]. Solar Energy Materials and Solar Cells, 2017, 164: 114-121.
|
3 |
Zhao Y J, Wang R Z, Wang L W, et al. Development of highly conductive KNO3/NaNO3 composite for TES (thermal energy storage)[J]. Energy, 2014, 70: 272-277.
|
4 |
Mohan G, Venkataraman M B, Coventry J. Sensible energy storage options for concentrating solar power plants operating above 600 ℃[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 319-337.
|
5 |
Wei X L, Song M, Wang W L, et al. Design and thermal properties of a novel ternary chloride eutectics for high-temperature solar energy storage[J]. Applied Energy, 2015, 156: 306-310.
|
6 |
刘波. 三元氯化物熔盐腐蚀性研究及新型传蓄热熔盐体系的构建[D]. 广州: 华南理工大学, 2017.
|
|
Liu B. Corrosion behavior of ternary chloride molten salt and construction of new chloride molten salt systems[D]. Guangzhou: South China University of Technology, 2017.
|
7 |
彭强. 多元熔盐传热蓄热材料的设计及性能调控[D]. 广州: 中山大学, 2011.
|
|
Peng Q. Design and performance control for multiple molten salts materials with heat transfer and thermal storage[D]. Guangzhou: Sun Yat-sen University, 2011.
|
8 |
徐芳, 王军涛. 热力学模拟LiNO3-NaNO3-KNO3和KCl-LiCl-CaCl2体系的三元共晶点[J]. 化学研究, 2015, 26(2): 179-184.
|
|
Xu F, Wang J T. Thermodynamic modeling of eutectic points in the LiNO3-NaNO3-KNO3 and KCl-LiCl-CaCl2 ternary systems[J]. Chemical Research, 2015, 26(2): 179-184.
|
9 |
Gal I J, Zsigrai I J, Pallgric I, et al. Calculation of phase equilibrium of ternary additive molten salt systems with a common anion [J]. Journal of the Chemical Society Faraday Transactions, 1983, 79(9): 2171-2178.
|
10 |
Robelin C, Chartrand P. Thermodynamic evaluation and optimization of the (NaCl + KCl + MgCl2 + CaCl2 + ZnCl2) system[J]. The Journal of Chemical Thermodynamics, 2011, 43(3): 377-391.
|
11 |
Pelton A D, Chartrand P. Thermodynamic evaluation and optimization of the LiCl-NaCl-KCl-RbCl-CsCl-MgCl2-CaCl2 system using the modified quasi-chemical model[J]. Metallurgical and Materials Transactions A, 2001, 32(6): 1361-1383.
|
12 |
乔芝郁. 冶金和材料计算物理化学[M]. 北京: 冶金工业出版社, 1999: 16.
|
|
Qiao Z Y. Computerized Physical Chemistry of Metallurgy and Materials[M]. Beijing: Metallurgical Industry Press, 1999: 16.
|
13 |
Foosnaes T, Østvold T, Øye H A, et al. Calculation of charge asymmetric additive ternary phase diagrams with and without compound formation[J]. Acta Chemica Scandinavica, 1978, 32a: 973-987.
|
14 |
Ding J, Pan G, Du L C, et al. Theoretical prediction of the local structures and transport properties of binary alkali chloride salts for concentrating solar power[J]. Nano Energy, 2017, 39: 380-389.
|
15 |
Okada I, Takagi R, Kawamura K. A molecular dynamics simulation of molten (Li-Rb)Cl implying the chemla effect of mobilities[J]. Zeitschrift Für Naturforschung A, 1980, 35(5): 493-499.
|
16 |
Matsumiya M, Matsuura H, Takagi R, et al. Internal cation mobilities in the ternary molten system (Na, K, Cs)Cl[J]. Journal of the Electrochemical Society, 2000, 147(11): 4206.
|
17 |
Matsumiya M, Takagi R. Temperature dependence of the electric properties of molten ternary chlorides by MD simulation[J]. Journal of Electroanalytical Chemistry, 2002, 529(1): 28-33.
|
18 |
Matsumiya M, Takagi R. A molecular dynamics simulation of the electric properties in molten chloride and fluoride quaternary systems[J]. Electrochimica Acta, 2001, 46(23): 3563-3572.
|
19 |
Matsumiya M, Takagi R. Investigation on the electric properties in molten quaternary systems by MD simulation[J]. Journal of Molecular Liquids, 2003, 102(1/2/3): 143-172.
|
20 |
Mayer J E. Dispersion and polarizability and the van der Waals potential in the alkali halides[J]. The Journal of Chemical Physics, 1933, 1(4): 270-279.
|
21 |
Gal I J, Paligorić I. Calculation of phase diagrams of binary salt mixtures with a common anion[J]. Journal of the Chemical Society, Faraday Transactions (1): Physical Chemistry in Condensed Phases, 1982, 78(6): 1993.
|
22 |
宋明, 魏小兰, 彭强, 等. 新型三元氯化物熔盐材料的设计及热稳定性研究[J]. 工程热物理学报, 2015, 36(2): 393-396.
|
|
Song M, Wei X L, Peng Q, et al. Thermal stability of a new designed ternary chloride molten salt material[J]. Journal of Engineering Thermophysics, 2015, 36(2): 393-396.
|
23 |
廖敏, 丁静, 魏小兰, 等. 高温碳酸熔盐的制备及传热蓄热性质[J]. 无机盐工业, 2008, 40(10): 15-17.
|
|
Liao M, Ding J, Wei X L, et al. Preparation and heat transfer and thermal storage property of high-temperature carbonate molten salt[J]. Inorganic Chemicals Industry, 2008, 40(10): 15-17.
|
24 |
Janz G J, Tomkins R P T. Physical properties data compilations relevant to energy storage [R]. National Bureau of Standards, 1981.
|
25 |
赵柏岑, 丁静, 魏小兰, 等. LiNO3-NaNO3-KNO3三元熔盐材料的设计及热稳定性研究[J]. 化工学报, 2019, 70(6): 2083-2091.
|
|
Zhao B C, Ding J, Wei X L, et al. Design and thermal stability study of LiNO3-NaNO3-KNO3 ternary molten salt system[J]. CIESC Journal, 2019, 70(6): 2083-2091.
|
26 |
Sora K, Garainer J. Thermochemical Data of Pure Substances[M]. 3rd ed. New York: VCH Publishers, 1995.
|
27 |
Lin P L, Pelton A D, Bale C W. Computation of ternary molten salt phase diagrams[J]. Journal of the American Ceramic Society, 1979, 62(7/8): 414-422.
|
28 |
Peng Q, Ding J, Wei X L, et al. The preparation and properties of multi-component molten salts[J]. Applied Energy, 2010, 87(9): 2812-2817.
|
29 |
Levin E M, Robbins C R, Mcmurdie H F, et al. Phase Diagrams for Ceramists[M]. Columbus: American Ceramic Society, 1964: 3099-7260.
|
30 |
黄琼珠, 路贵民, 汪瑾, 等. MgCl2·6H2O热分解机理的研究[J]. 无机材料学报, 2010, 25(3): 306-310.
|
|
Huang Q Z, Lu G M, Wang J, et al. Thermal decomposition mechanism of MgCl2·6H2O[J]. Journal of Inorganic Materials, 2010, 25(3): 306-310.
|
31 |
陈运生. 物理化学分析[M]. 北京: 高等教育出版社, 1987: 383-385.
|
|
Chen Y S. Physical-Chemical Analysis[M]. Beijing: Higher Education Press, 1987: 383-385.
|