CIESC Journal ›› 2025, Vol. 76 ›› Issue (2): 438-453.DOI: 10.11949/0438-1157.20241138
• Reviews and monographs • Previous Articles Next Articles
Ju DONG1(), Liuyang YU1, Shengzhe JIA1, Lianjun SHI2,3, Shihan WANG2,3, Guotao HU2,3, Weiwei TANG1(
), Jingkang WANG1, Junbo GONG1(
)
Received:
2024-10-15
Revised:
2024-11-14
Online:
2025-03-10
Published:
2025-02-25
Contact:
Weiwei TANG, Junbo GONG
董举1(), 余留洋1, 贾晟哲1, 史连军2,3, 王诗瀚2,3, 胡国涛2,3, 汤伟伟1(
), 王静康1, 龚俊波1(
)
通讯作者:
汤伟伟,龚俊波
作者简介:
董举(2002—),男,硕士研究生,dongju@tju.edu.cn
基金资助:
CLC Number:
Ju DONG, Liuyang YU, Shengzhe JIA, Lianjun SHI, Shihan WANG, Guotao HU, Weiwei TANG, Jingkang WANG, Junbo GONG. Current status and research progress of crystallization technology of electronic grade phosphoric acid[J]. CIESC Journal, 2025, 76(2): 438-453.
董举, 余留洋, 贾晟哲, 史连军, 王诗瀚, 胡国涛, 汤伟伟, 王静康, 龚俊波. 电子级磷酸的结晶精制技术发展现状与研究进展[J]. 化工学报, 2025, 76(2): 438-453.
Fig.2 Etch rates of Si3N4 and SiO2 films (a) and etch selectivity of Si3N4 to SiO2 (b) with the addition of NH4HF2 in the presence of 0.15%(mass) of Si(OH)4 in H3PO4; Etch rates of Si3N4 and SiO2 films (c) and etch selectivity of Si3N4 to SiO2 (d) with the concentration of Si(OH)4 in the presence of 0.30%(mass) of NH4HF2 in H3PO4[11]
项目 | 指标 | |
---|---|---|
E1 | E2 | |
磷酸(H3PO4)质量分数 (85%)/(%) | 85~87 | 85~87 |
易氧化物(以H3PO4计) 质量分数/% | ≤0.005 | ≤0.001 |
硝酸盐( | ≤5 | ≤0.5 |
硫酸盐( | ≤10 | ≤5 |
氯化物(Cl-)质量分数/(mg/kg) | ≤1 | ≤0.5 |
铝(Al)/(μg/kg) | ≤200 | ≤50 |
硼(B)/(μg/kg) | — | ≤50 |
锑(Sb)/(μg/kg) | ≤3000 | ≤300 |
砷(As)/(μg/kg) | ≤100 | ≤20 |
钡(Ba)/(μg/kg) | ≤100 | ≤20 |
镉(Cd)/(μg/kg) | ≤100 | ≤20 |
钙(Ca)/(μg/kg) | ≤1000 | ≤50 |
铬(Cr)/(μg/kg) | ≤100 | ≤20 |
钴(Co)/(μg/kg) | ≤100 | ≤20 |
铜(Cu)/(μg/kg) | ≤50 | ≤20 |
镓(Ga)/(μg/kg) | ≤100 | ≤10 |
金(Au)/(μg/kg) | ≤100 | ≤10 |
铁(Fe)/(μg/kg) | ≤300 | ≤50 |
铅(Pb)/(μg/kg) | ≤100 | ≤20 |
锂(Li)/(μg/kg) | ≤100 | ≤10 |
镁(Mg)/(μg/kg) | ≤100 | ≤20 |
锰(Mn)/(μg/kg) | ≤100 | ≤20 |
镍(Ni)/(μg/kg) | ≤100 | ≤20 |
钾(K)/(μg/kg) | ≤100 | ≤20 |
银(Ag)/(μg/kg) | ≤100 | ≤20 |
钠(Na)/(μg/kg) | ≤500 | ≤50 |
锡(Sn)/(μg/kg) | — | ≤10 |
锶(Sr)/(μg/kg) | ≤100 | ≤20 |
钛(Ti)/(μg/kg) | ≤100 | ≤50 |
锌(Zn)/(μg/kg) | ≤100 | ≤50 |
Table1 Quality standard for Electronic Grade Phosphoric Acid (GB/T 28159—2011)
项目 | 指标 | |
---|---|---|
E1 | E2 | |
磷酸(H3PO4)质量分数 (85%)/(%) | 85~87 | 85~87 |
易氧化物(以H3PO4计) 质量分数/% | ≤0.005 | ≤0.001 |
硝酸盐( | ≤5 | ≤0.5 |
硫酸盐( | ≤10 | ≤5 |
氯化物(Cl-)质量分数/(mg/kg) | ≤1 | ≤0.5 |
铝(Al)/(μg/kg) | ≤200 | ≤50 |
硼(B)/(μg/kg) | — | ≤50 |
锑(Sb)/(μg/kg) | ≤3000 | ≤300 |
砷(As)/(μg/kg) | ≤100 | ≤20 |
钡(Ba)/(μg/kg) | ≤100 | ≤20 |
镉(Cd)/(μg/kg) | ≤100 | ≤20 |
钙(Ca)/(μg/kg) | ≤1000 | ≤50 |
铬(Cr)/(μg/kg) | ≤100 | ≤20 |
钴(Co)/(μg/kg) | ≤100 | ≤20 |
铜(Cu)/(μg/kg) | ≤50 | ≤20 |
镓(Ga)/(μg/kg) | ≤100 | ≤10 |
金(Au)/(μg/kg) | ≤100 | ≤10 |
铁(Fe)/(μg/kg) | ≤300 | ≤50 |
铅(Pb)/(μg/kg) | ≤100 | ≤20 |
锂(Li)/(μg/kg) | ≤100 | ≤10 |
镁(Mg)/(μg/kg) | ≤100 | ≤20 |
锰(Mn)/(μg/kg) | ≤100 | ≤20 |
镍(Ni)/(μg/kg) | ≤100 | ≤20 |
钾(K)/(μg/kg) | ≤100 | ≤20 |
银(Ag)/(μg/kg) | ≤100 | ≤20 |
钠(Na)/(μg/kg) | ≤500 | ≤50 |
锡(Sn)/(μg/kg) | — | ≤10 |
锶(Sr)/(μg/kg) | ≤100 | ≤20 |
钛(Ti)/(μg/kg) | ≤100 | ≤50 |
锌(Zn)/(μg/kg) | ≤100 | ≤50 |
级别 | 单项金属杂质 | 控制微粒粒径 | 颗粒数 | IC集成度 |
---|---|---|---|---|
Grade1 | ≤100 ppb | ≥1 μm | ≤25/ml | 64 K |
Grade2 | ≤10 ppb | ≥0.5 μm | ≤25/ml | 4 M |
Grade3 | ≤1 ppb | ≥0.5 μm | ≤5/ml | 256 M |
Grade4 | ≤0.1 ppb | ≥0.2 μm | 16 G | |
Grade5 | ≤0.01 ppb |
Table 2 The purity of wet electronic chemicals in Semiconductor Equipment Materials International[20]
级别 | 单项金属杂质 | 控制微粒粒径 | 颗粒数 | IC集成度 |
---|---|---|---|---|
Grade1 | ≤100 ppb | ≥1 μm | ≤25/ml | 64 K |
Grade2 | ≤10 ppb | ≥0.5 μm | ≤25/ml | 4 M |
Grade3 | ≤1 ppb | ≥0.5 μm | ≤5/ml | 256 M |
Grade4 | ≤0.1 ppb | ≥0.2 μm | 16 G | |
Grade5 | ≤0.01 ppb |
Molar ratio | Al3+ removal efficiency/% | Mg2+ removal efficiency/% | F- removal efficiency/% | Phenomenon |
---|---|---|---|---|
Na+∶Al3+∶Mg2+∶F-= 1∶1∶1∶1 | 0 | 0 | 0 | no precipitation |
Na+∶Al3+∶Mg2+∶F-= 2∶1∶1∶2 | 0 | 0 | 0 | no precipitation |
Na+∶Al3+∶Mg2+∶F-= 3∶1∶1∶3 | 0 | 0 | 0 | no precipitation |
Na+∶Al3+∶Mg2+∶F-= 4∶1∶1∶4 | 48.9 | 44.5 | 38.4 | precipitation |
Na+∶Al3+∶Mg2+∶F-= 5∶1∶1∶5 | 65.4 | 55.4 | 58.1 | precipitation |
Na+∶Al3+∶Mg2+∶F-= 6∶1∶1∶6 | 99.4 | 83.8 | 88.7 | precipitation |
Na+∶Al3+∶Mg2+∶F-= 7∶1∶1∶6 | 98.1 | 83.4 | 88.2 | precipitation |
Na+∶Al3+∶Mg2+∶F-= 5∶1∶1∶6 | 99.6 | 80.1 | 82.6 | precipitation |
Na+∶Al3+∶Mg2+∶F-= 5∶1∶1∶7 | 99.5 | 96.7 | 84.5 | precipitation |
Na+∶Al3+∶Mg2+∶F-= 5∶1.5∶1∶6 | 96.98 | 93.68 | 95.17 | precipitation |
Na+∶Al3+∶Mg2+∶F-= 6∶1.5∶1∶7 | 96.94 | 93.55 | 85.23 | precipitation |
Table 3 Precipitation situations and removal efficiencies of Al3+, Mg2+ and F- for the Na x Al y Mg z F w in aqueous solution[32]
Molar ratio | Al3+ removal efficiency/% | Mg2+ removal efficiency/% | F- removal efficiency/% | Phenomenon |
---|---|---|---|---|
Na+∶Al3+∶Mg2+∶F-= 1∶1∶1∶1 | 0 | 0 | 0 | no precipitation |
Na+∶Al3+∶Mg2+∶F-= 2∶1∶1∶2 | 0 | 0 | 0 | no precipitation |
Na+∶Al3+∶Mg2+∶F-= 3∶1∶1∶3 | 0 | 0 | 0 | no precipitation |
Na+∶Al3+∶Mg2+∶F-= 4∶1∶1∶4 | 48.9 | 44.5 | 38.4 | precipitation |
Na+∶Al3+∶Mg2+∶F-= 5∶1∶1∶5 | 65.4 | 55.4 | 58.1 | precipitation |
Na+∶Al3+∶Mg2+∶F-= 6∶1∶1∶6 | 99.4 | 83.8 | 88.7 | precipitation |
Na+∶Al3+∶Mg2+∶F-= 7∶1∶1∶6 | 98.1 | 83.4 | 88.2 | precipitation |
Na+∶Al3+∶Mg2+∶F-= 5∶1∶1∶6 | 99.6 | 80.1 | 82.6 | precipitation |
Na+∶Al3+∶Mg2+∶F-= 5∶1∶1∶7 | 99.5 | 96.7 | 84.5 | precipitation |
Na+∶Al3+∶Mg2+∶F-= 5∶1.5∶1∶6 | 96.98 | 93.68 | 95.17 | precipitation |
Na+∶Al3+∶Mg2+∶F-= 6∶1.5∶1∶7 | 96.94 | 93.55 | 85.23 | precipitation |
项目 | 层熔融结晶 | 悬浮熔融结晶 |
---|---|---|
熔融体温度 | 高于或低于关键组分 熔点附近 | 低于关键组分熔点附近 |
结晶热转移 | 通过晶层 | 通过熔液 |
晶体生长速率 | 快,10-7~10-5 m/s | 慢,10-8~10-7 m/s |
晶体熔液相界面积 | 小,10~102 m2/m3 | 大,约104 m2/m3 |
转动装置 | 无 | 有 |
传质速率 | 大 | 小 |
结垢现象 | 无 | 有 |
流体输送 | 易,均为液体 | 难,固液混合物 |
固液分离 | 易,液体单独排出 | 难 |
装置放大 | 容易 | 较难 |
Table 4 Comparison of layer melt crystallization technology and suspension melt crystallization technology[50]
项目 | 层熔融结晶 | 悬浮熔融结晶 |
---|---|---|
熔融体温度 | 高于或低于关键组分 熔点附近 | 低于关键组分熔点附近 |
结晶热转移 | 通过晶层 | 通过熔液 |
晶体生长速率 | 快,10-7~10-5 m/s | 慢,10-8~10-7 m/s |
晶体熔液相界面积 | 小,10~102 m2/m3 | 大,约104 m2/m3 |
转动装置 | 无 | 有 |
传质速率 | 大 | 小 |
结垢现象 | 无 | 有 |
流体输送 | 易,均为液体 | 难,固液混合物 |
固液分离 | 易,液体单独排出 | 难 |
装置放大 | 容易 | 较难 |
Fig.12 Schematic diagram of a tube crystallization device for producing electronic grade phosphoric acid[42]1—crystallization tank; 2—spray thrower; 3—infrared lamp; 4—vertical tube; 5—cooling medium outlet; 6—acid outlet; 7—acid pump; 8—circulation pump; 9—recycle acid export; 10—acid tank; 11—product export; 12—feed port; 13—water inlet; 14—exhaust port; 15—circulating acid inlet; 16—acid inlet; 17—seed feeding port; 18—cooling medium inlet
1 | 冉孟杰, 杨润德, 任国兴. 电子级磷酸的制备工艺及研究进展[J]. 化肥设计, 2024, 62(2): 1-3, 16. |
Ran M J, Yang R D, Reng G X. Preparation process and research progress of electronic grade phosphoric acid[J]. Chemical Fertilizer Design, 2024, 62(2): 1-3, 16. | |
2 | 肖睿, 李韬, 任美洁, 等. 湿法磷酸除砷制备电子级磷酸研究进展[J]. 湿法冶金, 2024, 43(5): 504-512. |
Xiao R, Li T, Ren M J, et al. Research progress on preparation of electronic grade phosphoric acid by removing arsenic from wet-process phosphoric acid[J]. Hydrometallurgy of China, 2024, 43(5): 504-512. | |
3 | 齐亚兵, 张思敬. 湿法磷酸净化技术研究新进展及应用现状[J]. 应用化工, 2022, 51(9): 2798-2804. |
Qi Y B, Zhang S J. New research progress and present application situation of purification technology for wet-process phosphoric acid[J]. Applied Chemical Industry, 2022, 51(9): 2798-2804. | |
4 | 黄欣雨, 甘晨, 张名扬, 等. 湿法磷酸萃取技术发展现状与研究进展[J]. 工程科学学报, 2024, 46(11): 1948-1959. |
Huang X Y, Gan C, Zhang M Y, et al. Development status and research progress of wet phosphoric acid extraction technology[J]. Chinese Journal of Engineering, 2024, 46(11): 1948-1959. | |
5 | 陶隆海, 王永杰, 段家堂, 等. 湿法磷酸副产渣酸和萃余酸研究进展与展望[J]. 无机盐工业, 2024, 56(3): 12-18, 79. |
Tao L H, Wang Y J, Duan J T, et al. Research progress and prospect of sludge acid and raffinate acid by-product of wet-process phosphoric acid[J]. Inorganic Chemicals Industry, 2024, 56(3): 12-18, 79. | |
6 | 杨书丽. 电子工业清洗混合废酸分离及资源化工艺研究[D]. 绵阳: 绵阳师范学院, 2023. |
Yang S L. Research on the separation and resource utilization process of mixed waste acid from electronic industry cleaning[D]. Mianyang: Mianyang Teachers' College, 2023. | |
7 | 倪双林, 马航, 曾波, 等. 湿法磷酸生产新工艺开发研究[J]. 云南化工, 2024, 51(S1): 1-10. |
Ni S L, Ma H, Zeng B, et al. Development on new process of wet process phosphoric acid production[J]. Yunnan Chemical Technology, 2024, 51(S1): 1-10. | |
8 | 杨着, 姜飞. 电子级磷酸在电子工业中的应用及发展[J]. 当代化工研究, 2021(15): 101-102. |
Yang Z, Jiang F. Application and development of electronic grade phosphoric acid in electronic industry[J]. Modern Chemical Research, 2021(15): 101-102. | |
9 | 林军, 吴小海, 洪春美, 等. 电子级磷酸的制备工艺与应用研究进展[J]. 化工技术与开发, 2012, 41(2): 32-34, 4. |
Lin J, Wu X H, Hong C M, et al. Progress on preparation technology and application study of electronic grade phosphoric acid[J]. Technology & Development of Chemical Industry, 2012, 41(2): 32-34, 4. | |
10 | Kranz C, Wyczanowski S, Baumann U, et al. Industrial cleaning sequences for Al2O3-passivated PERC solar cells[J]. Energy Procedia, 2014, 55: 211-218. |
11 | Seo D, Bae J S, Oh E, et al. Selective wet etching of Si3N4/SiO2 in phosphoric acid with the addition of fluoride and silicic compounds[J]. Microelectronic Engineering, 2014, 118: 66-71. |
12 | 冯凯, 张庭, 王书萍, 等. 磷酸中金属离子的种类与含量对多晶硅蚀刻速率的影响[J]. 中国标准化, 2024(S1): 314-319. |
Feng K, Zhang T, Wang S P, et al. Effect of the type and content of metal ions in phosphoric acid on the etching rate of polysilicon[J]. China Standardization, 2024(S1): 314-319. | |
13 | Benrabah S, Legallais M, Besson P, et al. H3PO4-based wet chemical etching for recovery of dry-etched GaN surfaces[J]. Applied Surface Science, 2022, 582: 152309. |
14 | Sreejith K P, Sharma A K, Basu P K, et al. Etching methods for texturing industrial multi-crystalline silicon wafers: a comprehensive review[J]. Solar Energy Materials and Solar Cells, 2022, 238: 111531. |
15 | Azaroual M, Kervevan C, Lassin A, et al. Thermo-kinetic and physico-chemical modeling of processes generating scaling problems in phosphoric acid and fertilizers production industries[J]. Procedia Engineering, 2012, 46: 68-75. |
16 | Zan C, Shi L, Song Y Z, et al. Evaluation method for thermal processing of phosphoric acid with waste heat recovery[J]. Energy, 2006, 31(14): 2791-2804. |
17 | Liu Q, Liu W Z, Lv L, et al. Study on reactions of gaseous P2O5 with Ca3(PO4)2 and SiO2 during a rotary kiln process for phosphoric acid production[J]. Chinese Journal of Chemical Engineering, 2018, 26(4): 795-805. |
18 | El-Shall H, Abdel-Aal E A, Moudgil B M. Effect of surfactants on phosphogypsum crystallization and filtration during wet-process phosphoric acid production[J]. Separation Science and Technology, 2000, 35(3): 395-410. |
19 | Ye C W, Li J. Wet process phosphoric acid purification by solvent extraction using N-octanol and tributylphosphate mixtures[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(9): 1715-1720. |
20 | 张大洲, 龙辉, 卢文新, 等. 电子级磷酸研究现状及发展趋势分析[J]. 化肥设计, 2022, 60(4): 1-4, 20. |
Zhang D Z, Long H, Lu W X, et al. Analysis of existing researches and development trends of electronic-grade phosphoric acid[J]. Chemical Fertilizer Design, 2022, 60(4): 1-4, 20. | |
21 | Reyes L H, Medina I S, Mendoza R N, et al. Extraction of cadmium from phosphoric acid using resins impregnated with organophosphorus extractants[J]. Industrial & Engineering Chemistry Research, 2001, 40(5): 1422-1433. |
22 | Jin Y, Ma Y J, Weng Y L, et al. Solvent extraction of Fe3+ from the hydrochloric acid route phosphoric acid by D2EHPA in kerosene[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3446-3452. |
23 | Forouzesh M, Fatehifar E, Khoshbouy R, et al. Experimental investigation of iron removal from wet phosphoric acid through chemical precipitation process[J]. Chemical Engineering Research and Design, 2023, 189: 308-318. |
24 | Xu S S, He R R, Dong C J, et al. Acid stable layer-by-layer nanofiltration membranes for phosphoric acid purification[J]. Journal of Membrane Science, 2022, 644: 120090. |
25 | 林军, 吴小海, 苏杰文, 等. 一种搅拌结晶生产电子级磷酸的方法: 103771367B[P]. 2016-01-27. |
Lin J, Wu X H, Su J W, et al. A method for producing electronic-grade phosphoric acid by stirring and crystallizing: 103771367B[P]. 2016-01-27. | |
26 | 余留洋, 刘书博, 贾晟哲, 等. 电子级磷酸的纯化精制技术发展现状与研究进展[J]. 化工学报, 2024, 75(1): 1-19. |
Yu L Y, Liu S B, Jia S Z, et al. Current status and research progress of purification technology of electronic grade phosphoric acid[J]. CIESC Journal, 2024, 75(1): 1-19. | |
27 | Azimi A, Azari A, Rezakazemi M, et al. Removal of heavy metals from industrial wastewaters: a review[J]. ChemBioEng Reviews, 2017, 4(1): 37-59. |
28 | Meng C, Du M Y, Zhang Z B, et al. Open-framework vanadate as efficient ion exchanger for uranyl removal[J]. Environmental Science & Technology, 2024, 58(21): 9456-9465. |
29 | Hu Z J, Zhang T, Lv L, et al. Extraction performance and mechanism of TBP in the separation of Fe3+ from wet-processing phosphoric acid[J]. Separation and Purification Technology, 2021, 272: 118822. |
30 | Shinwari K J. Emerging technologies for the recovery of bioactive compounds from saffron species[M]. Amsterdam: Elsevier, 2021: 143-182. |
31 | 李军, 钟本和, 何浩明, 等. 用湿法磷酸制备工业级磷酸和食品级磷酸的方法: 1483666[P]. 2004-03-24. |
Li J, Zhong B H, He H M, et al. Method for preparing industrial and food grade phosphoric acid from wet process phosphoric acid: 1483666[P]. 2004-03-24. | |
32 | He B B, Fu Y, Zu Y, et al. Simultaneous removal of Al3+, Mg2+ and F- from wet-process phosphoric acid achieved by a co-precipitation strategy[J]. Separation and Purification Technology, 2024, 341: 126855. |
33 | Crini G, Lichtfouse E. Advantages and disadvantages of techniques used for wastewater treatment[J]. Environmental Chemistry Letters, 2019, 17(1): 145-155. |
34 | Obotey Ezugbe E, Rathilal S. Membrane technologies in wastewater treatment: a review[J]. Membranes, 2020, 10(5): 89. |
35 | Tsushima I, Maeda K, Yamamoto T, et al. Continuous crystallization of phosphoric acid using suspension crystallizer: effect of operating conditions on purity of crystals[J]. Crystal Research and Technology, 2022, 57(1): 2100102. |
36 | Ma Y, Hu Z P, Wang M, et al. A simple method to study hemihydrate phosphoric acid crystals growth process[J]. Crystal Research and Technology, 2016, 51(5): 337-343. |
37 | Tang H. Purification of phosphoric acid by melt crystallization[D]. Saxony-Anhalt: Martin Luther University, 2016. |
38 | 王静康, 姜晓滨, 侯宝红, 等. 液膜结晶制备电子级磷酸的方法: 101774555B[P]. 2011-08-31. |
Wang J K, Jiang X B, Hou B H, et al. A method for preparing electronic grade phosphoric acid through liquid membrane crystallization: 101774555B[P]. 2011-08-31. | |
39 | 刘海岛, 尹秋响. 熔融结晶及其耦合技术研究的进展[J]. 化学工业与工程, 2004, 21(5): 367-371. |
Liu H D, Yin Q X. Progress in melt crystallization and its hybrid technique[J]. Chemical Industry and Engineering, 2004, 21(5): 367-371. | |
40 | Jiang X B, Xiao W, He G H. Falling film melt crystallization (Ⅲ): Model development, separation effect compared to static melt crystallization and process optimization[J]. Chemical Engineering Science, 2014, 117: 198-209. |
41 | 朱健. 熔融结晶法制备电子级磷酸的方法: 1843900[P]. 2006-10-11. |
Zhu J. A process for preparaing electronic phosphoric acid with melt crystallization method: 1843900[P]. 2006-10-11. | |
42 | 林军, 吴小海, 苏杰文, 等. 一种列管结晶生产电子级磷酸的装置: 103896231B[P]. 2016-03-02. |
Lin J, Wu X H, Su J W, et al. A device for producing electronic grade phosphoric acid through tube crystallization: 103896231B[P]. 2016-03-02. | |
43 | 林军, 吴小海, 苏杰文, 等. 一种电子级磷酸隔板结晶装置: 103771374B[P]. 2016-04-20. |
Lin J, Wu X H, Su J W, et al. A kind of electron-level phosphoric acid baffle crystallization device: 103771374B[P]. 2016-04-20. | |
44 | 林军, 吴小海, 苏杰文, 等. 一种电子级磷酸热风加热结晶装置: 103771373B[P]. 2015-10-28. |
Lin J, Wu X H, Su J W, et al. A kind of electron-level phosphoric acid hot-blast heating crystallization apparatus: 103771373B[P]. 2015-10-28. | |
45 | 程景才, 张碧玉, 杨超, 等. 一种制备电子级磷酸的熔融结晶器及其方法与电子级磷酸: 113842663A[P]. 2021-12-28. |
Cheng J C, Zhang B Y, Yang C, et al. A melt crystallizer for preparing electronic-grade phosphoric acid, a method thereof and the electronic-grade phosphoric acid: 113842663A[P]. 2021-12-28. | |
46 | Jin Z X, Gao Z T, Gao Z Y, et al. Purification method of phosphoric acid through layercrystallization including washing operation: KR1020060111282A[P]. 2005-04-22. |
47 | 肖立华. 冷却结晶法制电子级磷酸的研究[D]. 昆明: 昆明理工大学, 2008. |
Xiao L H. Study on preparation of electronic grade phosphoric acid by cooling crystallization[D]. Kunming: Kunming University of Science and Technology, 2008. | |
48 | Chen A M, Zhu J W, Chen K, et al. Melt suspension crystallization for purification of phosphoric acid[J]. Asia-Pacific Journal of Chemical Engineering, 2013, 8(3): 354-361. |
49 | Wang B M, Li J, Qi Y B, et al. Phosphoric acid purification by suspension melt crystallization: parametric study of the crystallization and sweating steps[J]. Crystal Research and Technology, 2012, 47(10): 1113-1120. |
50 | 姜晓滨. 熔融结晶法制备高纯磷酸过程研究[D]. 天津: 天津大学, 2012. |
Jiang X B. Research on melt crystallization preparation process of hyperpure phosphate acid[D]. Tianjin: Tianjin University, 2012. | |
51 | 许史杰, 李嘉琦, 王彦飞, 等. 超声波辅助耦合熔融结晶制备超高纯邻氯对氨基甲苯的方法: 118439960A[P]. 2024-08-06. |
Xu S J, Li J Q, Wang Y F, et al. A method for preparing ultra-high purity o-chloro-p-aminotoluene by ultrasonic-assisted coupling melt crystallization: 118439960A[P]. 2024-08-06. | |
52 | 王彦飞, 马明佳, 许史杰. 一种耦合熔融结晶制备高纯三烯丙基异氰脲酸酯的方法: 117800927A[P]. 2024-04-02. |
Wang Y F, Ma M J, Xu S J. A method for preparing high-purity triallyl isocyanurate by coupling melt crystallization: 117800927A[P]. 2024-04-02. | |
53 | Beierling T, Gorny R, Sadowski G. Modeling growth rates in static layer melt crystallization[J]. Crystal Growth & Design, 2013, 13(12): 5229-5240. |
54 | Jia S Z, Yu L Y, Gao Z G, et al. Performance and analysis of key factors on the design of melt crystallization-based separation process[J]. AIChE Journal, 2023, 69(8): e18117. |
55 | Myasnikov S K. Melt entrapment and the effective distribution coefficient during the growth of a crystal layer[J]. Theoretical Foundations of Chemical Engineering, 2003, 37(1): 45-50. |
56 | Myasnikov S K. Transport of impurities out of a two-phase crystal layer into a melt under the effect of a temperature gradient: mechanisms and kinetics[J]. Theoretical Foundations of Chemical Engineering, 2003, 37(2): 137-143. |
57 | Taran A L, Nosov G A, Myasnikov S K, et al. Kinetics of crystallization of binary melts of eutectic-forming substances[J]. Theoretical Foundations of Chemical Engineering, 2004, 38(2): 164-168. |
58 | Ding S P, Huang X, Yin Q X, et al. Static layer melt crystallization: effects of impurities on the growth behaviors of crystal layers[J]. Separation and Purification Technology, 2021, 279: 119764. |
59 | Bai Y H, Zhu Z X, Yin Q X, et al. Facile model for predicting sweat mass and concentration in layer melt crystallization[J]. Industrial & Engineering Chemistry Research, 2022, 61(10): 3704-3712. |
60 | Guardani R, Neiro S M S, Bülau H, et al. Experimental comparison and simulation of static and dynamic solid layer melt crystallization[J]. Chemical Engineering Science, 2001, 56(7): 2371-2379. |
61 | Zheng R, Kennedy P K. A model for post-flow induced crystallization: general equations and predictions[J]. Journal of Rheology, 2004, 48(4): 823-842. |
62 | Urwin S J, Levilain G, Marziano I, et al. A structured approach to cope with impurities during industrial crystallization development[J]. Organic Process Research & Development, 2020, 24(8): 1443-1456. |
63 | Pietsch W. Agglomeration in Industry[M]. Weinheim: John Wiley & Sons, 2004. |
64 | Tsushima I, Maeda K, Arafune K, et al. Industrial crystallization of potassium sulfate using a suspension crystallizer: inclusion of mother liquor and an impurity distribution model[J]. Journal of Chemical Engineering of Japan, 2022, 55(4): 188-192. |
65 | 陈爱梅, 朱家文, 武斌, 等. 熔融悬浮结晶法提纯湿法磷酸[J]. 化学工程, 2012, 40(8): 52-56. |
Chen A M, Zhu J W, Wu B, et al. Purification of wet-process phosphoric acid by melt suspension crystallization[J]. Chemical Engineering (China), 2012, 40(8): 52-56. | |
66 | Qin F G F, Chen X D, Free K. Freezing on subcooled surfaces, phenomena, modeling and applications[J]. International Journal of Heat and Mass Transfer, 2009, 52(5/6): 1245-1253. |
67 | Zipp G L, Randolph A D. Selective fines destruction in batch crystallization[J]. Industrial & Engineering Chemistry Research, 1989, 28(9): 1446-1448. |
68 | 林军, 吴小海, 苏杰文, 等. U型管静态多级熔融结晶法制备电子级磷酸: 103754848B[P]. 2016-06-08. |
Lin J, Wu X H, Su J W, et al. A method for preparing an electronic-grade phosphoric acid by U-shaped pipe static multistage melt crystallization: 103754848B[P]. 2016-06-08. | |
69 | 钟本和, 陈亮, 李军, 等. 溶剂萃取法净化湿法磷酸的新进展[J]. 化工进展, 2005, 24(6): 596-602. |
Zhong B H, Chen L, Li J, et al. New progress in purification of wet process phosphoric acid by solvent extraction[J]. Chemical Industry and Engineering Progress, 2005, 24(6): 596-602. | |
70 | 李翠莲, 杨云碧. 湿法磷酸净化技术及发展[J]. 资源节约与环保, 2019(3): 4. |
Li C L, Yang Y B. Purification technology of wet phosphoric acid and its development[J]. Resources Economization & Environmental Protection, 2019(3): 4. | |
71 | 权晓威. 一种提纯肥料磷酸制电子级磷酸系统: 118079435A[P]. 2024-05-28. |
Quan X W. An electronic grade phosphoric acid production system for purifying fertilizer phosphoric acid: 118079435A[P]. 2024-05-28. | |
72 | Hassene M, Drouglazet G. The attractions of melt station crystallization[J]. Chemical Engineering, 1995, 102(9): 108. |
73 | Myasnikov S K, Uteshinsky A D, Kulov N N. Hybrid of pervaporation and condensation-distillation crystallization: a new combined separation technology[J]. Theoretical Foundations of Chemical Engineering, 2003, 37(6): 527-532. |
74 | Myasnikov S K, Uteshinsky A D, Kulov N N. Kinetics of the washing of granules in the melt[J]. Theoretical Foundations of Chemical Engineering, 2001, 35(2): 107-118. |
75 | 孙虹. 焦油中精蒽/咔唑提取工艺的评述[J]. 煤炭转化, 1998, 21(2): 29-32. |
Sun H. A review of abstraction pure anthracene and carbozle from tar[J]. Coal Conversion, 1998, 21(2): 29-32. | |
76 | 何洋江, 徐委岭, 戴朝云, 等. 一种亚氨基二苄提纯工艺: 118561754A[P]. 2024-08-30. |
He Y J, Xu W L, Dai C Y, et al. An iminodibenzyl purification process: 118561754A[P]. 2024-08-30. | |
77 | Ban H, Cheng Y W, Wang L J, et al. Preparation of high-purity 2,6-naphthalenedicarboxylic acid from coal tar distillate[J]. Chemical Engineering & Technology, 2019, 42(6): 1188-1198. |
78 | 叶青, 王车礼, 裘兆蓉. 减压精馏-熔融结晶耦合装置提纯人造麝香的研究[J]. 现代化工, 2001, 21(1): 32-35. |
Ye Q, Wang C L, Qiu Z R. Purification of artificial musk DDHI by combined vacuum distillation melt crystallization technology[J]. Modern Chemical Industry, 2001, 21(1): 32-35. | |
79 | Kontos S S, Katrivesis F K, Constantinou T C, et al. Implementation of membrane filtration and melt crystallization for the effective treatment and valorization of olive mill wastewaters[J]. Separation and Purification Technology, 2018, 193: 103-111. |
[1] | Xiangjun MENG, Linrui YANG, Lipei PENG, Xiankui YANG, Yingxi HUA, Renren ZHANG, Kaitian ZHENG, Chunjian XU. Design and control of nitrogen trifluoride distillation separation process [J]. CIESC Journal, 2025, 76(2): 707-717. |
[2] | Linrui YANG, Jianyi LIU, Ling LI, Yongchao HE, Kaitian ZHENG, Jianpo REN, Chunjian XU. Process design and energy saving for benzene/cyclohexane/cyclohexene extractive distillation process [J]. CIESC Journal, 2025, 76(2): 731-743. |
[3] | Gonghan GUO, Huidian DING, Qiang LI, Shengkun JIA, Xing QIAN, Yang YUAN, Haisheng CHEN, Yiqing LUO. Dynamic Bayesian optimization method for batch distillation operation process [J]. CIESC Journal, 2025, 76(2): 755-768. |
[4] | Feng LIU, Rujie BI, Quan WANG, Zhao KUANG, Xiangshuai MENG, Guoqiang HUANG. Effect of vibration on the stability of on-site mixed emulsion explosive matrix with different water contents [J]. CIESC Journal, 2025, 76(1): 405-415. |
[5] | Wenbo ZHOU, Jiangwei YIN, Dan ZHANG, Yue YANG, Jiahao YU, Bingchao ZHAO. Experimental study on evaporation of aqueous NaCl solution droplet heating by thermal irradiation [J]. CIESC Journal, 2024, 75(S1): 85-94. |
[6] | Shuzhen WANG, Yuting WANG, Mengxi MA, Wei ZHANG, Jiangnan XIANG, Haiying LU, Yan WANG, Binbin FAN, Jiajun ZHENG, Weijiong DAI, Ruifeng LI. Synthesis of ZSM-22 molecular sieve by two-step crystallization and its hydroisomerization performance [J]. CIESC Journal, 2024, 75(9): 3176-3187. |
[7] | Qi QI, Liping GUO, Liming SHI, Ying ZHENG, Pengju PAN. Crystallization behavior and properties of polypropylene and its copolymers modified with sorbitol nucleating agents [J]. CIESC Journal, 2024, 75(7): 2688-2699. |
[8] | Xiao XUE, Minjing SHANG, Yuanhai SU. Advances on continuous-flow synthesis of drugs in microreactors [J]. CIESC Journal, 2024, 75(4): 1439-1454. |
[9] | Wenhui ZHANG, Ruyi TANG, Xili CUI, Huabin XING. Fluorine spectrum analysis and structural characterization of Y-type perfluoropolyether carboxylic acid [J]. CIESC Journal, 2024, 75(4): 1718-1723. |
[10] | Jing LIU, Wenbo YANG, Yingdi LYU, Shengyang TAO. Spray-anti-solvent crystallization method for preparing doped aluminum powder composite microspheres [J]. CIESC Journal, 2024, 75(4): 1724-1734. |
[11] | Wenkai CHENG, Jinyu YAN, Jiajun WANG, Lianfang FENG. Research progress of horizontal kneading reactor and its application in polymerization industry [J]. CIESC Journal, 2024, 75(3): 768-781. |
[12] | Rao CHEN, Xin ZHAO, Daixin CHEN, Shengkun JIANG, Yingjiang LIAN, Jinbo WANG, Mei YANG, Guangwen CHEN. Continuous dinitration of toluene to dinitrotoluene in a microreactor [J]. CIESC Journal, 2024, 75(3): 867-876. |
[13] | Shaoyang MA, Hanzhuo XU, Liangliang ZHANG, Baochang SUN, Haikui ZOU, Yong LUO, Guangwen CHU. Research progress of reactors for liquid-liquid heterogeneous system [J]. CIESC Journal, 2024, 75(3): 727-742. |
[14] | Changhui LIU, Tong XIAO, Qingyi LIU, Long GENG, Jiateng ZHAO. Investigation of the thermal storage mechanism of porous TiO2 enhanced phase change materials [J]. CIESC Journal, 2024, 75(2): 706-714. |
[15] | Bin LIAN, Yan LONG, Qilei XU, Baoming SHAN, Xuezhong WANG, Fangkun ZHANG. Sensitivity analysis of model parameters and process operation for batch cooling crystallization process [J]. CIESC Journal, 2024, 75(12): 4587-4595. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||