CIESC Journal ›› 2024, Vol. 75 ›› Issue (12): 4587-4595.DOI: 10.11949/0438-1157.20240627
• Separation engineering • Previous Articles Next Articles
Bin LIAN1(
), Yan LONG1, Qilei XU1, Baoming SHAN1, Xuezhong WANG2, Fangkun ZHANG1(
)
Received:2024-06-05
Revised:2024-07-24
Online:2025-01-03
Published:2024-12-25
Contact:
Fangkun ZHANG
连斌1(
), 龙妍1, 徐啟蕾1, 单宝明1, 王学重2, 张方坤1(
)
通讯作者:
张方坤
作者简介:连斌(1999—),男,硕士研究生,lian.bin@outlook.com
基金资助:CLC Number:
Bin LIAN, Yan LONG, Qilei XU, Baoming SHAN, Xuezhong WANG, Fangkun ZHANG. Sensitivity analysis of model parameters and process operation for batch cooling crystallization process[J]. CIESC Journal, 2024, 75(12): 4587-4595.
连斌, 龙妍, 徐啟蕾, 单宝明, 王学重, 张方坤. 间歇冷却结晶过程模型参数及操作敏感性分析[J]. 化工学报, 2024, 75(12): 4587-4595.
Add to citation manager EndNote|Ris|BibTeX
| 类型 | 参数 | 初始值 |
|---|---|---|
| 操作参数 | 晶种质量m0 | 1.470 g |
| 晶种分布均值μ | 127.780 μm | |
| 晶种分布标准差σ | 18.650 | |
| 溶液初始温度T0 | 40℃ | |
| 溶液初始浓度C0 | 0.104 g/g | |
| 批次时间tf | 4600 s | |
| 动力学参数 | 生长模型系数kg | 8.5708 μm/s |
| 生长模型系数g | 1.0000 | |
| 成核模型系数kb | 0.0380 μm-3·s-1 | |
| 成核模型系数b | 3.4174 | |
| 溶解模型系数kd | 10.7192 μm/s | |
| 溶解模型系数d | 0.5122 |
Table 1 Main research parameters of PBE model
| 类型 | 参数 | 初始值 |
|---|---|---|
| 操作参数 | 晶种质量m0 | 1.470 g |
| 晶种分布均值μ | 127.780 μm | |
| 晶种分布标准差σ | 18.650 | |
| 溶液初始温度T0 | 40℃ | |
| 溶液初始浓度C0 | 0.104 g/g | |
| 批次时间tf | 4600 s | |
| 动力学参数 | 生长模型系数kg | 8.5708 μm/s |
| 生长模型系数g | 1.0000 | |
| 成核模型系数kb | 0.0380 μm-3·s-1 | |
| 成核模型系数b | 3.4174 | |
| 溶解模型系数kd | 10.7192 μm/s | |
| 溶解模型系数d | 0.5122 |
| 参数 | CG | CGN | CGND | ||
|---|---|---|---|---|---|
| F1 | F1 | F2 | F1 | F2 | |
| μ | 1.392 | 1.363 | 0.013 | 0.049 | 0.085 |
| σ | 0.108 | 0.109 | 0.007 | 0.025 | 0.002 |
| m0 | 0.241 | 0.235 | 0.010 | 0.023 | 0.027 |
| C0 | 0.912 | 0.893 | 0.128 | 0.014 | 1.450 |
| T0 | 0.002 | 0.002 | 0.001 | 0.028 | 0.827 |
| tf | 0.012 | 0.012 | 0.024 | 0.015 | 0.073 |
| kg | 0.013 | 0.013 | 0.034 | 0.033 | 0.069 |
| g | 0.070 | 0.073 | 0.192 | 0.043 | 0.414 |
| kb | — | 0.001 | 0.009 | 0.021 | 0.010 |
| b | — | 0.005 | 0.217 | 0.019 | 0.211 |
| kd | — | — | — | 0.011 | 0.017 |
| d | — | — | — | 0.016 | 0.054 |
Table 2 Sensitivity analysis results of Morris method
| 参数 | CG | CGN | CGND | ||
|---|---|---|---|---|---|
| F1 | F1 | F2 | F1 | F2 | |
| μ | 1.392 | 1.363 | 0.013 | 0.049 | 0.085 |
| σ | 0.108 | 0.109 | 0.007 | 0.025 | 0.002 |
| m0 | 0.241 | 0.235 | 0.010 | 0.023 | 0.027 |
| C0 | 0.912 | 0.893 | 0.128 | 0.014 | 1.450 |
| T0 | 0.002 | 0.002 | 0.001 | 0.028 | 0.827 |
| tf | 0.012 | 0.012 | 0.024 | 0.015 | 0.073 |
| kg | 0.013 | 0.013 | 0.034 | 0.033 | 0.069 |
| g | 0.070 | 0.073 | 0.192 | 0.043 | 0.414 |
| kb | — | 0.001 | 0.009 | 0.021 | 0.010 |
| b | — | 0.005 | 0.217 | 0.019 | 0.211 |
| kd | — | — | — | 0.011 | 0.017 |
| d | — | — | — | 0.016 | 0.054 |
| 参数 | CG | CGN | CGND | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| F1 | F1 | F2 | F1 | F2 | ||||||
| Morris | PAWN | Morris | PAWN | Morris | PAWN | Morris | PAWN | Morris | PAWN | |
| μ | 1 | 1 | 1 | 1 | 6 | 6 | 1 | 2 | 5 | 5 |
| σ | 4 | 3 | 4 | 3 | 9 | 8 | 5 | 5 | 12 | 12 |
| m0 | 3 | 4 | 3 | 4 | 7 | 10 | 6 | 10 | 9 | 10 |
| C0 | 2 | 2 | 2 | 2 | 3 | 3 | 11 | 11 | 1 | 2 |
| T0 | 8 | 8 | 9 | 8 | 10 | 9 | 4 | 4 | 2 | 1 |
| tf | 7 | 5 | 7 | 5 | 5 | 5 | 10 | 9 | 6 | 6 |
| kg | 6 | 7 | 6 | 9 | 4 | 4 | 3 | 1 | 7 | 7 |
| g | 5 | 6 | 5 | 6 | 2 | 2 | 2 | 3 | 3 | 3 |
| kb | — | — | 10 | 10 | 8 | 7 | 7 | 7 | 11 | 11 |
| b | — | — | 8 | 7 | 1 | 1 | 8 | 8 | 4 | 4 |
| kd | — | — | — | — | — | — | 12 | 12 | 10 | 9 |
| d | — | — | — | — | — | — | 9 | 6 | 8 | 8 |
Table 3 Sorting of parameters sensitivity
| 参数 | CG | CGN | CGND | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| F1 | F1 | F2 | F1 | F2 | ||||||
| Morris | PAWN | Morris | PAWN | Morris | PAWN | Morris | PAWN | Morris | PAWN | |
| μ | 1 | 1 | 1 | 1 | 6 | 6 | 1 | 2 | 5 | 5 |
| σ | 4 | 3 | 4 | 3 | 9 | 8 | 5 | 5 | 12 | 12 |
| m0 | 3 | 4 | 3 | 4 | 7 | 10 | 6 | 10 | 9 | 10 |
| C0 | 2 | 2 | 2 | 2 | 3 | 3 | 11 | 11 | 1 | 2 |
| T0 | 8 | 8 | 9 | 8 | 10 | 9 | 4 | 4 | 2 | 1 |
| tf | 7 | 5 | 7 | 5 | 5 | 5 | 10 | 9 | 6 | 6 |
| kg | 6 | 7 | 6 | 9 | 4 | 4 | 3 | 1 | 7 | 7 |
| g | 5 | 6 | 5 | 6 | 2 | 2 | 2 | 3 | 3 | 3 |
| kb | — | — | 10 | 10 | 8 | 7 | 7 | 7 | 11 | 11 |
| b | — | — | 8 | 7 | 1 | 1 | 8 | 8 | 4 | 4 |
| kd | — | — | — | — | — | — | 12 | 12 | 10 | 9 |
| d | — | — | — | — | — | — | 9 | 6 | 8 | 8 |
| 1 | Zhang F K, Shan B M, Wang Y L, et al. Progress and opportunities for utilizing seeding techniques in crystallization processes[J]. Organic Process Research & Development, 2021, 25(7): 1496-1511. |
| 2 | He Y, Gao Z G, Zhang T, et al. Seeding techniques and optimization of solution crystallization processes[J]. Organic Process Research & Development, 2020, 24(10): 1839-1849. |
| 3 | Ferguson S, Morris G, Hao H X, et al. Automated self seeding of batch crystallizations via plug flow seed generation[J]. Chemical Engineering Research and Design, 2014, 92(11): 2534-2541. |
| 4 | Kalbasenka A N, Spierings L C P, Huesman A E M, et al. Application of seeding as a process actuator in a model predictive control framework for fed-batch crystallization of ammonium sulphate[J]. Particle & Particle Systems Characterization, 2007, 24(1): 40-48. |
| 5 | Unno J, Hirasawa I. Partial seeding policy for controlling size distribution of product crystal by batch cooling crystallization[J]. Journal of Chemical Engineering of Japan, 2019, 52(6): 501-507. |
| 6 | Aamir E, Nagy Z K, Rielly C D. Evaluation of the effect of seed preparation method on the product crystal size distribution for batch cooling crystallization processes[J]. Crystal Growth & Design, 2010, 10(11): 4728-4740. |
| 7 | 龚俊波, 孙杰, 王静康. 面向智能制造的工业结晶研究进展[J]. 化工学报, 2018, 69(11): 4505-4517. |
| Gong J B, Sun J, Wang J K. Research progress of industrial crystallization towards intelligent manufacturing[J]. CIESC Journal, 2018, 69(11): 4505-4517. | |
| 8 | Nagy Z K, Braatz R D. Advances and new directions in crystallization control[J]. Annual Review of Chemical and Biomolecular Engineering, 2012, 3: 55-75. |
| 9 | Nyande B W, Thomas K M, Takarianto A A, et al. Control of crystal size distribution in batch protein crystallization by integrating a gapped Kenics static mixer to flexibly produce seed crystals[J]. Chemical Engineering Science, 2022, 263: 118085. |
| 10 | Mikami T, Kaizu R K. Influence of feed condition on crystal size distribution of potassium alum obtained by unseeded two-stage semi-batch cooling crystallization[J]. Journal of Chemical Engineering of Japan, 2019, 52(3): 317-324. |
| 11 | Trampuž M, Teslić D, Likozar B. Crystallization of fesoterodine fumarate active pharmaceutical ingredient: modelling of thermodynamic equilibrium, nucleation, growth, agglomeration and dissolution kinetics and temperature cycling[J]. Chemical Engineering Science, 2019, 201: 97-111. |
| 12 | Jordens J, Canini E, Gielen B, et al. Ultrasound assisted particle size control by continuous seed generation and batch growth[J]. Crystals, 2017, 7(7): 195. |
| 13 | Zhang F K, Liu T, Chen W X, et al. Seed recipe design for batch cooling crystallization with application to l-glutamic acid[J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 3175-3187. |
| 14 | Zádor J, Zsély I G, Turányi T. Local and global uncertainty analysis of complex chemical kinetic systems[J]. Reliability Engineering & System Safety, 2006, 91(10/11): 1232-1240. |
| 15 | Wen T, Wang H, Huang W, et al. Research progress on controlling of crystal size distribution (CSD) in crystallization process[J]. Chemical Industry and Engineering, 2021, 38(4): 44-55. |
| 16 | Lenka M, Sarkar D. Improving crystal size distribution by internal seeding combined cooling/antisolvent crystallization with a cooling/heating cycle[J]. Journal of Crystal Growth, 2018, 486: 130-136. |
| 17 | Nagy Z K. Model based robust control approach for batch crystallization product design[J]. Computers & Chemical Engineering, 2009, 33(10): 1685-1691. |
| 18 | 关润铎. 基于粒数衡算的结晶过程粒度分布预测与优化[D]. 大连: 大连理工大学, 2017. |
| Guan R D. Prediction and optimization of particle size distribution in crystallization processe based on particle number balance[D]. Dalian: Dalian University of Technology, 2017. | |
| 19 | 赵绍磊, 王耀国, 张腾, 等. 制药结晶中的先进过程控制[J]. 化工学报, 2020, 71(2): 459-474. |
| Zhao S L, Wang Y G, Zhang T, et al. Advanced process control of pharmaceutical crystallization[J]. CIESC Journal, 2020, 71(2): 459-474. | |
| 20 | Seki H, Su Y. Robust optimal temperature swing operations for size control of seeded batch cooling crystallization[J]. Chemical Engineering Science, 2015, 133: 16-23. |
| 21 | Nagy Z K, Braatz R D. Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis[J]. Journal of Process Control, 2004, 14(4): 411-422. |
| 22 | Long B W, Yang H T, Ding Y G. Impact of seed loading ratio on the growth kinetics of mono-ammonium phosphate under isothermal batch crystallization[J]. Korean Journal of Chemical Engineering, 2016, 33(2): 623-628. |
| 23 | Yang Y Y, Xie C X, Ma C, et al. Continuous crystallization kinetics of cefradine in a mixed suspension mixed product removal system[J]. Organic Process Research & Development, 2024. 28(7): 2534-2541. |
| 24 | Majumder A, Nagy Z K. Fines removal in a continuous plug flow crystallizer by optimal spatial temperature profiles with controlled dissolution[J]. AIChE Journal, 2013, 59(12): 4582-4594. |
| 25 | Aamir E, Nagy Z K, Rielly C D, et al. Combined quadrature method of moments and method of characteristics approach for efficient solution of population balance models for dynamic modeling and crystal size distribution control of crystallization processes[J]. Industrial & Engineering Chemistry Research, 2009, 48(18): 8575-8584. |
| 26 | Paleari L, Movedi E, Zoli M, et al. Sensitivity analysis using Morris: just screening or an effective ranking method?[J]. Ecological Modelling, 2021, 455: 109648. |
| 27 | Puy A, Lo Piano S, Saltelli A. A sensitivity analysis of the PAWN sensitivity index[J]. Environmental Modelling & Software, 2020, 127: 104679. |
| 28 | Al-Zoubi N, Malamataris S. Effects of initial concentration and seeding procedure on crystallisation of orthorhombic paracetamol from ethanolic solution[J]. International Journal of Pharmaceutics, 2003, 260(1): 123-135. |
| 29 | Doki N, Kubota N, Yokota M, et al. Production of sodium chloride crystals of uni-modal size distribution by batch dilution crystallization[J]. Journal of Chemical Engineering of Japan, 2002, 35(11): 1099-1104. |
| 30 | Öner M, Stocks S M, Sin G. Comprehensive sensitivity analysis and process risk assessment of large scale pharmaceutical crystallization processes[J]. Computers & Chemical Engineering, 2020, 135: 106746. |
| 31 | Mohammad K, Rahim S A A, Abu Bakar M R. Effect of seed loading and temperature of seeding on carbamazepine-saccharin co-crystal[J]. Indian Journal of Science and Technology, 2017, 10(6): 1-5. |
| 32 | 康得军, 邱福杰, 温儒杰, 等. 基于SWMM的LID参数局部与全局敏感性分析[J]. 中国给水排水, 2023, 39(17): 131-138. |
| Kang D J, Qiu F J, Wen R J, et al. Analysis on local and global sensitivity of LID parameters based on SWMM[J]. China Water & Wastewater, 2023, 39(17): 131-138. |
| [1] | Wenbo ZHOU, Jiangwei YIN, Dan ZHANG, Yue YANG, Jiahao YU, Bingchao ZHAO. Experimental study on evaporation of aqueous NaCl solution droplet heating by thermal irradiation [J]. CIESC Journal, 2024, 75(S1): 85-94. |
| [2] | Junhao HUANG, Keliang PANG, Fangyuan SUN, Fujun LIU, Zhiyuan GU, Long HAN, Yanquan DUAN, Yanhui FENG. Influence of bell structure of coke dry quenching furnace on coke distribution [J]. CIESC Journal, 2024, 75(S1): 158-169. |
| [3] | Shuzhen WANG, Yuting WANG, Mengxi MA, Wei ZHANG, Jiangnan XIANG, Haiying LU, Yan WANG, Binbin FAN, Jiajun ZHENG, Weijiong DAI, Ruifeng LI. Synthesis of ZSM-22 molecular sieve by two-step crystallization and its hydroisomerization performance [J]. CIESC Journal, 2024, 75(9): 3176-3187. |
| [4] | Junxia MA, Lintao LI, Weili XIONG. A semi-supervised soft sensor modeling method based on the Tri-training GPR [J]. CIESC Journal, 2024, 75(7): 2613-2623. |
| [5] | Qi QI, Liping GUO, Liming SHI, Ying ZHENG, Pengju PAN. Crystallization behavior and properties of polypropylene and its copolymers modified with sorbitol nucleating agents [J]. CIESC Journal, 2024, 75(7): 2688-2699. |
| [6] | Yanling CHEN, Bingzhi YUAN, Liwei WANG, Chen ZHANG, Hanyu ZHU. Study on the adsorption kinetics of metal chloride-ammonia working fluid pair under non-equilibrium conditions [J]. CIESC Journal, 2024, 75(6): 2252-2261. |
| [7] | Yuhui SHI, Jiyuan XING, Xuehan JIANG, Shuang YE, Weiguang HUANG. Numerical simulation of bubble breakup and coalescence in centrifugal impeller based on PBM [J]. CIESC Journal, 2024, 75(5): 1816-1829. |
| [8] | Ang LI, Zhenyu ZHAO, Hong LI, Xin GAO. Microwave induced construction of highly dispersed Pd/FeP catalysts and their electrocatalytic performance [J]. CIESC Journal, 2024, 75(4): 1594-1606. |
| [9] | Jing LIU, Wenbo YANG, Yingdi LYU, Shengyang TAO. Spray-anti-solvent crystallization method for preparing doped aluminum powder composite microspheres [J]. CIESC Journal, 2024, 75(4): 1724-1734. |
| [10] | Changhui LIU, Tong XIAO, Qingyi LIU, Long GENG, Jiateng ZHAO. Investigation of the thermal storage mechanism of porous TiO2 enhanced phase change materials [J]. CIESC Journal, 2024, 75(2): 706-714. |
| [11] | Chuan LI, Zhenqu HONG, Baoming SHAN, Qilei XU, Fangkun ZHANG. High-order compact difference method for solving the multidimensional population balance equation [J]. CIESC Journal, 2024, 75(12): 4513-4522. |
| [12] | Maoxian WANG, Qidian SUN, Zhe FU, Fang HUA, Ye JI, Yi CHENG. Understanding pyrolysis process of polyethylene by combined method of molecular-level kinetic model with machine learning [J]. CIESC Journal, 2024, 75(11): 4320-4332. |
| [13] | Liuyang YU, Shubo LIU, Shengzhe JIA, Hang MA, Banglong WAN, Qiwen SU, Jingkang WANG, Weiwei TANG, Yujuan HE, Junbo GONG. Current status and research progress of purification technology of electronic grade phosphoric acid [J]. CIESC Journal, 2024, 75(1): 1-19. |
| [14] | Xueyi MA, Keqin LIU, Jijiang HU, Zhen YAO. CFD studies on the mixing and reaction in a solution polymerization reactor for POE production [J]. CIESC Journal, 2024, 75(1): 322-337. |
| [15] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||