CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 4297-4309.DOI: 10.11949/0438-1157.20250054
• Energy and environmental engineering • Previous Articles Next Articles
Xiaoling WANG1,2(
), Shaoqing WANG2(
), Yungang ZHAO2,3, Fangzhe CHANG2,4, Ruifeng MU2
Received:2025-01-13
Revised:2025-03-19
Online:2025-09-17
Published:2025-08-25
Contact:
Shaoqing WANG
王小令1,2(
), 王绍清2(
), 赵云刚2,3, 常方哲2,4, 穆瑞峰2
通讯作者:
王绍清
作者简介:王小令(1994—),男,博士,讲师,wangxiaoling@xju.edu.cn
基金资助:CLC Number:
Xiaoling WANG, Shaoqing WANG, Yungang ZHAO, Fangzhe CHANG, Ruifeng MU. Mechanism of organic Ca transformation during coal hydropyrolysis: insights from ReaxFF molecular dynamics simulations[J]. CIESC Journal, 2025, 76(8): 4297-4309.
王小令, 王绍清, 赵云刚, 常方哲, 穆瑞峰. 基于ReaxFF MD模拟的煤加氢热解有机Ca转化机制研究[J]. 化工学报, 2025, 76(8): 4297-4309.
Add to citation manager EndNote|Ris|BibTeX
| 样品 | 工业分析/% | Ro/% | 元素分析/% | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Mad | Aad | Vdaf | Cdaf | Hdaf | Odaf① | Ndaf | St,d | ||
| ZDV | 15.14 | 2.93 | 48.57 | 0.54 | 72.92 | 4.27 | 21.57 | 0.61 | 0.63 |
| ZDI | 14.33 | 3.95 | 31.73 | 0.37 | 78.66 | 3.10 | 17.01 | 0.63 | 0.60 |
Table 1 The proximate analysis, ultimate analysis, and mean maximum vitrinite reflectance (Ro) of samples
| 样品 | 工业分析/% | Ro/% | 元素分析/% | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Mad | Aad | Vdaf | Cdaf | Hdaf | Odaf① | Ndaf | St,d | ||
| ZDV | 15.14 | 2.93 | 48.57 | 0.54 | 72.92 | 4.27 | 21.57 | 0.61 | 0.63 |
| ZDI | 14.33 | 3.95 | 31.73 | 0.37 | 78.66 | 3.10 | 17.01 | 0.63 | 0.60 |
| 样品 | Ca的含量/% | |
|---|---|---|
| 实验加载Ca | 模型中的Ca | |
| ZDV-Ca | 1.98 | 1.53 |
| ZDI-Ca | 2.02 | 1.61 |
Table 2 Content of Ca in loading Ca experiment and molecular model of coal
| 样品 | Ca的含量/% | |
|---|---|---|
| 实验加载Ca | 模型中的Ca | |
| ZDV-Ca | 1.98 | 1.53 |
| ZDI-Ca | 2.02 | 1.61 |
| 样品与产物 | Ca的含量/(mg/kg) | ||
|---|---|---|---|
| Char(焦炭基准) | Char(原煤基准) | Tar(原煤基准) | |
| ZDV-Ca | 19716.5 | 19716.5 | — |
| ZDV-Ca-500 | 27262.0 | 17338.6 | 43.3 |
| ZDV-Ca-600 | 27313.2 | 15732.4 | 2.0 |
| ZDV-Ca-700 | 33422.3 | 17780.7 | 57.2 |
Table 3 The content of Ca in char and tar products of ZDV-Ca hydropyrolysis at 500, 600, 700℃
| 样品与产物 | Ca的含量/(mg/kg) | ||
|---|---|---|---|
| Char(焦炭基准) | Char(原煤基准) | Tar(原煤基准) | |
| ZDV-Ca | 19716.5 | 19716.5 | — |
| ZDV-Ca-500 | 27262.0 | 17338.6 | 43.3 |
| ZDV-Ca-600 | 27313.2 | 15732.4 | 2.0 |
| ZDV-Ca-700 | 33422.3 | 17780.7 | 57.2 |
| [1] | 尚建选, 牛犇, 牛梦龙, 等. 以煤热解为龙头的煤分质利用技术: 回顾与展望[J]. 洁净煤技术, 2023, 29(7): 1-20. |
| Shang J X, Niu B, Niu M L, et al. Coal grading utilization technologies based on coal pyrolysis: review and prospect[J]. Clean Coal Technology, 2023, 29(7): 1-20. | |
| [2] | Wu L, Guan Y N, Li C C, et al. Free-radical behaviors of co-pyrolysis of low-rank coal and different solid hydrogen-rich donors: a critical review[J]. Chemical Engineering Journal, 2023, 474: 145900. |
| [3] | Zhou J B, Zhuang X G, Alastuey A, et al. Geochemistry and mineralogy of coal in the recently explored Zhundong large coal field in the Junggar basin, Xinjiang province, China[J]. International Journal of Coal Geology, 2010, 82(1/2): 51-67. |
| [4] | Zhu C, Qu S J, Zhang J, et al. Distribution, occurrence and leaching dynamic behavior of sodium in Zhundong coal[J]. Fuel, 2017, 190: 189-197. |
| [5] | Zhao Y, Liu L, Qiu P H, et al. Impacts of chemical fractionation on Zhundong coal's chemical structure and pyrolysis reactivity[J]. Fuel Processing Technology, 2017, 155: 144-152. |
| [6] | Liang D C, Xie Q, Wei Z, et al. Transformation of alkali and alkaline earth metals in Zhundong coal during pyrolysis in an entrained flow bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2019, 142: 104661. |
| [7] | Shi H, Wu Y X, Zhang M, et al. Ash deposition of Zhundong coal in a 350 MW pulverized coal furnace: influence of sulfation[J]. Fuel, 2020, 260: 116317. |
| [8] | Vainio E, Vänskä K, Laurén T, et al. Impact of boiler load and limestone addition on SO3 and corrosive cold-end deposits in a coal-fired CFB boiler[J]. Fuel, 2021, 304: 121313. |
| [9] | Huffman G P, Huggins F E. Analysis of the inorganic constituents in low-rank coals[M]//The Chemistry of Low-Rank Coals. Washington, D.C.: American Chemical Society, 1984: 159-174. |
| [10] | Benson S A, Holm P L. Comparison of inorganics in three low-rank coals[J]. Industrial & Engineering Chemistry Product Research and Development, 1985, 24(1): 145-149. |
| [11] | 马岩, 黄镇宇, 唐慧儒, 等. 准东煤灰化过程中的矿物演变及矿物添加剂对其灰熔融特性的影响[J]. 燃料化学学报, 2014, 42(1): 20-25. |
| Ma Y, Huang Z Y, Tang H R, et al. Mineral conversion of Zhundong coal during ashing process and the effect of mineral additives on its ash fusion characteristics[J]. Journal of Fuel Chemistry and Technology, 2014, 42(1): 20-25. | |
| [12] | Li G D, Li S Q, Huang Q, et al. Fine particulate formation and ash deposition during pulverized coal combustion of high-sodium lignite in a down-fired furnace[J]. Fuel, 2015, 143: 430-437. |
| [13] | 赵冰, 王嘉瑞, 陈凡敏, 等. 高钠煤水热脱钠处理及其对燃烧特性的影响[J]. 燃料化学学报, 2014, 42(12): 1416-1422. |
| Zhao B, Wang J R, Chen F M, et al. Hydrothermal treatment to remove sodium from high sodium coal and its influence on combustion characteristics[J]. Journal of Fuel Chemistry and Technology, 2014, 42(12): 1416-1422. | |
| [14] | Yang X H, Lv P, Zhu S H, et al. Release of Ca during coal pyrolysis and char gasification in H2O, CO2 and their mixtures[J]. Journal of Analytical and Applied Pyrolysis, 2018, 132: 217-224. |
| [15] | Wang C A, Zhao L, Han T, et al. Release and transformation behaviors of sodium, calcium, and iron during oxy-fuel combustion of Zhundong coals[J]. Energy & Fuels, 2018, 32(2): 1242-1254. |
| [16] | Quyn D M, Wu H W, Li C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal (part Ⅰ): Volatilisation of Na and Cl from a set of NaCl-loaded samples[J]. Fuel, 2002, 81(2): 143-149. |
| [17] | Li C Z, Sathe C, Kershaw J R, et al. Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal[J]. Fuel, 2000, 79(3/4): 427-438. |
| [18] | Hong D K, Cao Z, Guo X. Effect of calcium on the secondary reactions of tar from Zhundong coal pyrolysis: a molecular dynamics simulation using ReaxFF[J]. Journal of Analytical and Applied Pyrolysis, 2019, 137: 246-252. |
| [19] | Shadman F, Sams D A, Punjak W A. Significance of the reduction of alkali carbonates in catalytic carbon gasification[J]. Fuel, 1987, 66(12): 1658-1663. |
| [20] | Yao Q, Li S Q, Xu H W, et al. Studies on formation and control of combustion particulate matter in China: a review[J]. Energy, 2009, 34(9): 1296-1309. |
| [21] | Li X J, Li C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal (part Ⅷ): Catalysis and changes in char structure during gasification in steam[J]. Fuel, 2006, 85(10/11): 1518-1525. |
| [22] | Wang X L, Wang S Q, Zhao Y G, et al. Occurrence modes of AAEMs (Na+ and Ca2+) and the effect on the molecular structures of Zhundong coal via quantum chemistry[J]. ACS Omega, 2023, 8(49): 46528-46539. |
| [23] | Du C S, Liu L, Qiu P H. Variation of char reactivity during catalytic gasification with steam: comparison among catalytic gasification by ion-exchangeable Na, Ca, and Na/Ca mixture[J]. Energy & Fuels, 2018, 32(1): 142-153. |
| [24] | Wang X L, Wang S Q, Zhao Y G, et al. Construction and verification of vitrinite-rich and inertinite-rich Zhundong coal models at the aggregate level: new insights from the spatial arrangement and thermal behavior perspective[J]. RSC Advances, 2023, 13(11): 7569-7584. |
| [25] | Li G Y, Ding J X, Zhang H, et al. ReaxFF simulations of hydrothermal treatment of lignite and its impact on chemical structures[J]. Fuel, 2015, 154: 243-251. |
| [26] | Zheng M, Li X X, Liu J, et al. Pyrolysis of Liulin coal simulated by GPU-based ReaxFF MD with cheminformatics analysis[J]. Energy & Fuels, 2014, 28(1): 522-534. |
| [27] | Zhang T T, Li X X, Qiao X J, et al. Initial mechanisms for an overall behavior of lignin pyrolysis through large-scale ReaxFF molecular dynamics simulations[J]. Energy & Fuels, 2016, 30(4): 3140-3150. |
| [28] | Zheng M, Li X X, Liu J, et al. Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics[J]. Energy & Fuels, 2013, 27(6): 2942-2951. |
| [29] | Zhou Z J, Guo L Z, Chen L P, et al. Study of pyrolysis of brown coal and gasification of coal-water slurry using the ReaxFF reactive force field[J]. International Journal of Energy Research, 2018, 42(7): 2465-2480. |
| [30] | Guo L Z, Zhou Z J, Chen L P, et al. Study of the pyrolysis of coals of different rank using the ReaxFF reactive force field[J]. Journal of Molecular Modeling, 2019, 25(6): 174. |
| [31] | Salmon E, van Duin A C T, Lorant F, et al. Thermal decomposition process in algaenan of Botryococcus braunii race L(part 2): Molecular dynamics simulations using the ReaxFF reactive force field[J]. Organic Geochemistry, 2009, 40(3): 416-427. |
| [32] | Cheng X M, Wang Q D, Li J Q, et al. ReaxFF molecular dynamics simulations of oxidation of toluene at high temperatures[J]. The Journal of Physical Chemistry A, 2012, 116(40): 9811-9818. |
| [33] | Sun C, Zhu A X, Xu T, et al. Atomic-level analysis of migration and transformation of organic sodium in high-alkali coal pyrolysis using reactive molecular dynamics simulations[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 110189. |
| [34] | Liang Y H, Wang F, Zhang H, et al. A ReaxFF molecular dynamics study on the mechanism of organic sulfur transformation in the hydropyrolysis process of lignite[J]. Fuel Processing Technology, 2016, 147: 32-40. |
| [35] | Sun C, Wei X L, Kang R N, et al. Intrinsic sodium occurrence in Zhundong coal: experimental observations and molecular modeling[J]. Fuel, 2021, 305: 121491. |
| [36] | Si T, Hong D K, Li P, et al. The migration and transformation of sodium carboxylate during Zhundong coal pyrolysis and combustion: a ReaxFF simulation study[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105098. |
| [1] | Xiaoguang MI, Guogang SUN, Hao CHENG, Xiaohui ZHANG. Performance simulation model and validation of printed circuit natural gas cooler [J]. CIESC Journal, 2025, 76(S1): 426-434. |
| [2] | Xianchao REN, Yaxiu GU, Shaobin DUAN, Wenzhu JIA, Hanlin LI. Experimental study on heat and mass transfer performance of elliptical tube-fin evaporative condenser [J]. CIESC Journal, 2025, 76(S1): 75-83. |
| [3] | Linhui YUAN, Yu WANG. Heat dissipation performance of single server immersion jet liquid cooling system [J]. CIESC Journal, 2025, 76(S1): 160-169. |
| [4] | Di WU, Bin HU, Jiatong JIANG. Experimental study and application analysis of R1233zd(E) high temperature heat pump [J]. CIESC Journal, 2025, 76(S1): 377-383. |
| [5] | Guorui HUANG, Yao ZHAO, Mingxi XIE, Erjian CHEN, Yanjun DAI. Experimental study on a novel waste heat recovery system based on desiccant coated exchanger in data center [J]. CIESC Journal, 2025, 76(S1): 409-417. |
| [6] | Xinquan SHA, Ran HU, Lei DING, Zhenhua JIANG, Yinong WU. Development and testing of an independent two-stage valved linear compressor for space applications [J]. CIESC Journal, 2025, 76(S1): 114-122. |
| [7] | Haoran SUN, Chengyun WU, Yanmeng WANG, Jingnan SUN, Renyu HU, Zhongdi DUAN. Modeling and experimental study on the evaporation characteristics of liquid droplets subject to thermal convection [J]. CIESC Journal, 2025, 76(S1): 123-132. |
| [8] | Ziteng YAN, Feilong ZHAN, Guoliang DING. Structural design and effect verification of casing-type distributor used in air-conditioners [J]. CIESC Journal, 2025, 76(S1): 152-159. |
| [9] | Jiahao LIN, Fangzhong FU, Haohui YE, Jin HU, Mingcan YAO, Helin FAN, Xu WANG, Ruixiang WANG, Zhifeng XU. Effect of NdF3 content on local structure and transport properties of NdF3-LiF molten salt [J]. CIESC Journal, 2025, 76(8): 3834-3841. |
| [10] | Zheng GAO, Hui WANG, Zhiguo QU. Data-driven high-throughput screening of anion-pillared metal-organic frameworks for hydrogen storage [J]. CIESC Journal, 2025, 76(8): 4259-4272. |
| [11] | Liang QIAO, Shang LI, Xinliang LIU, Ming WANG, Pei ZHANG, Yingfei HOU. Synthesis and molecular simulation of terpolymer viscosity reducer for heavy oil [J]. CIESC Journal, 2025, 76(7): 3686-3695. |
| [12] | Rongting HUANG, Yichun TAO, Jianglin CHEN, Shihang LI, Zixi YANG, Shiyuan WANG, Xiangxuan LUO. Research on prediction of regeneration rate of mine dehumidification solution [J]. CIESC Journal, 2025, 76(7): 3572-3584. |
| [13] | Zirui LI, Kai QI, Jun WANG, Guodong XIA. Molecular dynamics study of ion rejection process based on Janus nanochannel [J]. CIESC Journal, 2025, 76(7): 3531-3538. |
| [14] | Zijuan LI, Xiaoyan TAN, Yongsheng WU, Chenyi YANG, Hong CHEN, Xiaogang BI, Jie LIU, Faquan YU. Molecular simulation study on CO2/N2 separation via 3D-contorted catalytic arene-norbornene annulation polymer membrane [J]. CIESC Journal, 2025, 76(5): 2348-2357. |
| [15] | Hao QI, Yujie WANG, Shenhui LI, Qi ZOU, Yiqun LIU, Zhiping ZHAO. Molecular simulation study on adsorption and diffusion of C3H6 and C3H8 on Co/Zn-ZIFs [J]. CIESC Journal, 2025, 76(5): 2313-2326. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||