CIESC Journal ›› 2025, Vol. 76 ›› Issue (S1): 426-434.DOI: 10.11949/0438-1157.20241370
• Energy and environmental engineering • Previous Articles
Xiaoguang MI1,2(
), Guogang SUN1(
), Hao CHENG2, Xiaohui ZHANG2
Received:2024-11-27
Revised:2024-12-10
Online:2025-06-26
Published:2025-06-25
Contact:
Guogang SUN
通讯作者:
孙国刚
作者简介:密晓光(1987—),男,博士研究生,高级工程师,mixg@cnooc.com.cn
CLC Number:
Xiaoguang MI, Guogang SUN, Hao CHENG, Xiaohui ZHANG. Performance simulation model and validation of printed circuit natural gas cooler[J]. CIESC Journal, 2025, 76(S1): 426-434.
密晓光, 孙国刚, 程昊, 张晓慧. 印刷电路板式天然气冷却器性能仿真模型和验证[J]. 化工学报, 2025, 76(S1): 426-434.
Add to citation manager EndNote|Ris|BibTeX
| 工质 | 关联式形式 | 适用范围 | 文献 |
|---|---|---|---|
| 天然气工质 | 2300<Re<5×106 0.5<Pr<2000 | [ | |
| Re>2300 | [ | ||
| 海水工质 | 0<Re<3000 0.66<Pr<1.41 | [ | |
| Re≤2300 | [ |
Table 1 Correlation equation for fluid flow and heat transfer
| 工质 | 关联式形式 | 适用范围 | 文献 |
|---|---|---|---|
| 天然气工质 | 2300<Re<5×106 0.5<Pr<2000 | [ | |
| Re>2300 | [ | ||
| 海水工质 | 0<Re<3000 0.66<Pr<1.41 | [ | |
| Re≤2300 | [ |
| 项目 | 天然气侧 | 海水侧 |
|---|---|---|
| 板片规格 | 600 mm×180 mm×0.6 mm | 600 mm×180 mm×0.6 mm |
| 换热通道宽度 | 0.9 mm | 0.9 mm |
| 换热通道深度 | 0.8 mm | 0.4 mm |
| 换热通道间距 | 1.5 mm | 1.5 mm |
| 换热单元数 | 121个 | 121个 |
| 芯体换热面积 | 22.8 m2 | 19.3 m2 |
Table 2 Structural parameters of natural gas cooler
| 项目 | 天然气侧 | 海水侧 |
|---|---|---|
| 板片规格 | 600 mm×180 mm×0.6 mm | 600 mm×180 mm×0.6 mm |
| 换热通道宽度 | 0.9 mm | 0.9 mm |
| 换热通道深度 | 0.8 mm | 0.4 mm |
| 换热通道间距 | 1.5 mm | 1.5 mm |
| 换热单元数 | 121个 | 121个 |
| 芯体换热面积 | 22.8 m2 | 19.3 m2 |
| 工况编号 | Vh,in/(Nm3/h) | Vc,in/(m3/h) | th,in/℃ | th,out/℃ | tc,in/℃ | tc,out/℃ | ph,in/kPaG | ∆ph/kPa | pc,in/kPaG | Q/kW |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 3677.0 | 2.5 | 54.2 | 21.00 | 18.7 | 41.1 | 4378.00 | 10.25 | 578.00 | 66.57 |
| 2 | 576.0 | 3.9 | 54.6 | 20.60 | 18.6 | 41.4 | 4396.00 | 15.00 | 579.00 | 106.83 |
| 3 | 6986.5 | 5.0 | 54.4 | 20.50 | 18.4 | 39.8 | 4399.00 | 17.83 | 557.00 | 129.10 |
| 4 | 8724.8 | 7.1 | 54.4 | 19.80 | 18.7 | 38.0 | 4418.00 | 22.00 | 575.00 | 164.60 |
| 5 | 10817.0 | 8.7 | 54.7 | 20.22 | 18.7 | 38.2 | 44.00 | 26.66 | 570.00 | 20.28 |
| 6 | 12579.0 | 9.8 | 54.9 | 20.40 | 18.6 | 38.8 | 4445.00 | 30.50 | 578.00 | 236.48 |
Table 3 Onsite data recording
| 工况编号 | Vh,in/(Nm3/h) | Vc,in/(m3/h) | th,in/℃ | th,out/℃ | tc,in/℃ | tc,out/℃ | ph,in/kPaG | ∆ph/kPa | pc,in/kPaG | Q/kW |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 3677.0 | 2.5 | 54.2 | 21.00 | 18.7 | 41.1 | 4378.00 | 10.25 | 578.00 | 66.57 |
| 2 | 576.0 | 3.9 | 54.6 | 20.60 | 18.6 | 41.4 | 4396.00 | 15.00 | 579.00 | 106.83 |
| 3 | 6986.5 | 5.0 | 54.4 | 20.50 | 18.4 | 39.8 | 4399.00 | 17.83 | 557.00 | 129.10 |
| 4 | 8724.8 | 7.1 | 54.4 | 19.80 | 18.7 | 38.0 | 4418.00 | 22.00 | 575.00 | 164.60 |
| 5 | 10817.0 | 8.7 | 54.7 | 20.22 | 18.7 | 38.2 | 44.00 | 26.66 | 570.00 | 20.28 |
| 6 | 12579.0 | 9.8 | 54.9 | 20.40 | 18.6 | 38.8 | 4445.00 | 30.50 | 578.00 | 236.48 |
| 工况编号 | Vh,in/(Nm3/h) | Vc,in/(m3/h) | th,in/℃ | th,out/℃ | tc,in/℃ | tc,out/℃ | ph,in/kPaG | ∆ph/kPa | pc,in/kPaG | ∆pc/kPa | Q/kW |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 3677.0 | 2.5 | 54.2 | 19.85 | 18.7 | 41.91 | 4378.00 | 11.23 | 578.00 | 3.44 | 68.99 |
| 2 | 576.0 | 3.9 | 54.6 | 20.09 | 18.6 | 41.79 | 4396.00 | 14.38 | 579.00 | 5.41 | 108.65 |
| 3 | 6986.5 | 5.0 | 54.4 | 19.83 | 18.4 | 40.28 | 4399.00 | 16.68 | 557.00 | 7.09 | 131.95 |
| 4 | 8724.8 | 7.1 | 54.4 | 19.94 | 18.7 | 37.97 | 4418.00 | 20.45 | 575.00 | 10.22 | 164.35 |
| 5 | 10817.0 | 8.7 | 54.7 | 20.21 | 18.7 | 38.27 | 44.00 | 25.86 | 570.00 | 1.43 | 20.93 |
| 6 | 12579.0 | 9.8 | 54.9 | 20.45 | 18.6 | 38.84 | 4445.00 | 31.11 | 578.00 | 1.85 | 236.12 |
Table 4 Performance simulation results of PCHE
| 工况编号 | Vh,in/(Nm3/h) | Vc,in/(m3/h) | th,in/℃ | th,out/℃ | tc,in/℃ | tc,out/℃ | ph,in/kPaG | ∆ph/kPa | pc,in/kPaG | ∆pc/kPa | Q/kW |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 3677.0 | 2.5 | 54.2 | 19.85 | 18.7 | 41.91 | 4378.00 | 11.23 | 578.00 | 3.44 | 68.99 |
| 2 | 576.0 | 3.9 | 54.6 | 20.09 | 18.6 | 41.79 | 4396.00 | 14.38 | 579.00 | 5.41 | 108.65 |
| 3 | 6986.5 | 5.0 | 54.4 | 19.83 | 18.4 | 40.28 | 4399.00 | 16.68 | 557.00 | 7.09 | 131.95 |
| 4 | 8724.8 | 7.1 | 54.4 | 19.94 | 18.7 | 37.97 | 4418.00 | 20.45 | 575.00 | 10.22 | 164.35 |
| 5 | 10817.0 | 8.7 | 54.7 | 20.21 | 18.7 | 38.27 | 44.00 | 25.86 | 570.00 | 1.43 | 20.93 |
| 6 | 12579.0 | 9.8 | 54.9 | 20.45 | 18.6 | 38.84 | 4445.00 | 31.11 | 578.00 | 1.85 | 236.12 |
| 1 | 李迎凯. 基于热流固耦合的微型换热器设计方法研究[D]. 南昌: 南昌大学, 2015. |
| Li Y K. The research on the design method of micro heat exchanger based on thermal fluid-structure interaction[D]. Nanchang: Nanchang University, 2015. | |
| 2 | 尤学刚, 刘新宇, 曾冬, 等. 国产印刷电路板式换热器的首次工业应用研究[J]. 石油机械, 2022, 50(2): 46-52. |
| You X G, Liu X Y, Zeng D, et al. First industrial application research on domestic printed circuit heat exchanger[J]. China Petroleum Machinery, 2022, 50(2): 46-52. | |
| 3 | Tsuzuki N, Kato Y, Ishiduka T. High performance printed circuit heat exchanger[J]. Applied Thermal Engineering, 2007, 27(10): 1702-1707. |
| 4 | Xu X Y, Wang Q W, Li L, et al. Thermal-hydraulic performance of different discontinuous fins used in a printed circuit heat exchanger for supercritical CO2 [J]. Numerical Heat Transfer Part A - Applications, 2015, 68(10): 1067-1086. |
| 5 | Bartel N, Chen M, Utgikar V P, et al. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors[J]. Annals of Nuclear Energy, 2015, 81: 143-149. |
| 6 | Khan H H, Aneesh A M, Sharma A, et al. Thermal-hydraulic characteristics and performance of 3D wavy channel based printed circuit heat exchanger[J]. Applied Thermal Engineering, 2015, 87: 519-528. |
| 7 | Ma T, Li L, Xu X Y, et al. Study on local thermal-hydraulic performance and optimization of zigzag-type printed circuit heat exchanger at high temperature[J]. Energy Conversion and Management, 2015, 104: 55-66. |
| 8 | Meshram A, Jaiswal A K, Khivsara S D, et al. Modeling and analysis of a printed circuit heat exchanger for supercritical CO2 power cycle applications[J]. Applied Thermal Engineering, 2016, 109: 861-870. |
| 9 | Kim S G, Lee Y, Ahn Y, et al. CFD aided approach to design printed circuit heat exchangers for supercritical CO2 Brayton cycle application[J]. Annals of Nuclear Energy, 2016, 92: 175-185. |
| 10 | Jeon S, Baik Y J, Byon C, et al. Thermal performance of heterogeneous PCHE for supercritical CO2 energy cycle[J]. International Journal of Heat and Mass Transfer, 2016, 102: 867-876. |
| 11 | 谢瑶, 李剑锐,胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209. |
| Xie Y, Li J R, Hu H T. Simulation of supercritical methane flow and heat transfer characteristics in printed circuit heat exchanger[J]. CIESC Journal, 2021, 72(S1): 203-209. | |
| 12 | 袭著望. 微通道内氢气流动与换热特性数值研究[D]. 吉林: 东北电力大学, 2023. |
| Xi Z W. Numerical study of hydrogen flow and heat transfer characteristics in microchannels[D]. Jilin: Northeast Electric Power University, 2023. | |
| 13 | 余智强, 吴建泽, 任亚涛, 等. 印刷板式微通道换热器流动与传热特性的理论模型[J]. 化工学报, 2022, 73(12): 5324-534. |
| Yu Z Q, Wu J Z, Ren Y T, et al. Calculation model of flow and heat transfer characteristics of printed microchannel heat exchanger[J]. CIESC Journal, 2022, 73(12): 5324-534. | |
| 14 | 纪宇轩. 超临界二氧化碳布雷顿循环印刷电路板式换热器特性的模拟与试验研究[D]. 杭州: 浙江大学, 2022. |
| Ji Y X. Numerical and experimental research on characteristics of printed circuit board heat exchanger in supercritical carbon dioxide Brayton cycle[D]. Hangzhou: Zhejiang University, 2022. | |
| 15 | 李倩, 张蓉民, 林子杰, 等. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
| Li Q, Zhang R M, Lin Z J, et al. Prediction and simulation of flow and heat transfer for printed circuit plate heat exchanger based on machine learning[J]. CIESC Journal, 2024, 75(8): 2852-2864. | |
| 16 | Renaud L P, David S, Stephen O. Impact of mechanical design issues on printed circuit heat exchangers[C]//Proceedings of SCO2 Power Cycle Symposium 2011. Colorado: University of Colorado at Boulder, 2011. |
| 17 | David S, Renaud L P, Stephen J D. Design considerations for compact heat exchangers[C]//Proceedings of ICAPP 2008. Anaheim, CA USA, 2008. |
| 18 | 许旭东, 赵丹, 丁国良, 等. 冰箱用微通道冷凝器分相集总参数模型[J]. 化工学报, 2016, 67(S2): 217-222. |
| Xu X D, Zhao D, Ding G L, et al. Lumped parameter model for microchannel condenser of refrigerator[J]. CIESC Journal, 2016, 67(S2): 217-222. | |
| 19 | Oscarsson S P, Krakow K I, Lin S. Evaporator models for operation with dry, wet, and frosted finned surfaces: Part 1-heat transfer and fluid flow theory[J]. ASHRAE Trans, 1990, 96(1): 373-39. |
| 20 | Green R H, Roberts L. The effect of air-coil design on the performance of heat pumps and air conditioners[R]. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (United States), 1996. |
| 21 | Jolly P G, Tso C P, Wong Y W, et al. Simulation and measurement on the full-load performance of a refrigeration system in a shipping container[J]. International Journal of Refrigeration, 2000, 23(2): 112-126. |
| 22 | Ren T, Ding G L, Wang T T, et al. A general three-dimensional simulation approach for micro-channel heat exchanger based on graph theory[J]. Applied Thermal Engineering, 201, 59(1/2): 660-674. |
| 23 | 郭梦茹, 蔡姗姗, 陈焕新, 等. 翅片管式冷凝器性能分析及多目标优化[J]. 制冷与空调, 2018, 18(4): 93-98. |
| Guo M R, Cai S S, Chen H X, et al. Performance analysis and multi-objective optimization of finned-tube condenser[J]. Refrigeration and Air-Conditioning, 2018, 18(4): 93-98. | |
| 24 | 王兆奇, 李孟山, 胡海涛, 等. 双排对折型微通道换热器仿真模型开发[J]. 化工学报, 2021, 72(S1): 113-119. |
| Wang Z Q, Li M S, Hu H T, et al. Development of simulation model for double row folded microchannel heat exchanger[J]. CIESC Journal, 2021, 72(S1): 113-119. | |
| 25 | 孙浩然, 段钟弟, 丁国良. 采用适用于小管径空调器关联式的换热器仿真软件开发[C]//上海市制冷学会2013年学术年会. 上海, 201. |
| Sun H R, Duan Z D, Ding G L. Development of a simulation tool with correlations suitable for small diameter tube heat exchanger[C]//2013 Academic Annual Conference of Shanghai Refrigeration Society. Shanghai, 201. | |
| 26 | 刘焘. 套管换热器与翅片管换热器的动态分布参数仿真[D]. 上海: 上海交通大学, 2008. |
| Liu T. Dynamic and distributed model of double-tube heat exchanger and fin-and-tube heat exchanger[D]. Shanghai: Shanghai Jiao Tong University, 2008. | |
| 27 | 陈红. 制冷系统换热器建模与仿真方法研究[D]. 重庆: 重庆大学, 2006. |
| Chen H. Study on the methods of modeling and simulation for heat exchanger in refrigeration system[D]. Chongqing: Chongqing University, 2006. | |
| 28 | 王婷婷. 陆基和海况下LNG绕管式换热器的热力性能仿真与实验验证[D]. 上海: 上海交通大学, 2017. |
| Wang T T. Thermodynamic simulation and experimental validation of spiral-wound LNG heat exchangers applied in land-based and offshore LNG plants[D]. Shanghai: Shanghai Jiao Tong University, 2017. | |
| 29 | Ruan B H, Lin W S, Li W Z, et al. Numerical simulation on heat transfer and flow of supercritical methane in printed circuit heat exchangers[J]. Cryogenics, 2022, 126: 103541. |
| 30 | Chen M H, Sun X D, Christensen R N, et al. Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger[J]. Applied Thermal Engineering, 2016, 108: 1409-1417. |
| 31 | Kim I H, No H C. Thermal-hydraulic physical models for a printed circuit heat exchanger covering He, He-CO2 mixture, and water fluids using experimental data and CFD[J]. Experimental Thermal and Fluid Science, 2013, 48: 213-221. |
| [1] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [2] | Senqing ZHUO, Hua CHEN, Wei CHEN, Bin SHANG, Hengheng LIU, Tangtang GU, Wei BAI, Longyan WANG, Haomin CAO, Guoliang DING. Model development and software implementation for predicting APF of multi-split air conditioning system [J]. CIESC Journal, 2025, 76(S1): 370-376. |
| [3] | Di WU, Bin HU, Jiatong JIANG. Experimental study and application analysis of R1233zd(E) high temperature heat pump [J]. CIESC Journal, 2025, 76(S1): 377-383. |
| [4] | Guorui HUANG, Yao ZHAO, Mingxi XIE, Erjian CHEN, Yanjun DAI. Experimental study on a novel waste heat recovery system based on desiccant coated exchanger in data center [J]. CIESC Journal, 2025, 76(S1): 409-417. |
| [5] | Xinquan SHA, Ran HU, Lei DING, Zhenhua JIANG, Yinong WU. Development and testing of an independent two-stage valved linear compressor for space applications [J]. CIESC Journal, 2025, 76(S1): 114-122. |
| [6] | Haoran SUN, Chengyun WU, Yanmeng WANG, Jingnan SUN, Renyu HU, Zhongdi DUAN. Modeling and experimental study on the evaporation characteristics of liquid droplets subject to thermal convection [J]. CIESC Journal, 2025, 76(S1): 123-132. |
| [7] | Ziteng YAN, Feilong ZHAN, Guoliang DING. Structural design and effect verification of casing-type distributor used in air-conditioners [J]. CIESC Journal, 2025, 76(S1): 152-159. |
| [8] | Linhui YUAN, Yu WANG. Heat dissipation performance of single server immersion jet liquid cooling system [J]. CIESC Journal, 2025, 76(S1): 160-169. |
| [9] | Hanxiao ZHANG, Ruiqi WANG, Yating ZHANG. Prediction of scale factor of heat exchangers based on CNN-LSTM neural network [J]. CIESC Journal, 2025, 76(4): 1671-1679. |
| [10] | Wen CHAN, Wan YU, Gang WANG, Huashan SU, Fenxia HUANG, Tao HU. Thermodynamic and economic analyses and dual-objective optimization of Allam cycle with improved regenerator layout [J]. CIESC Journal, 2025, 76(4): 1680-1692. |
| [11] | Pengfei ZHAO, Ruomei QI, Xinfeng GUO, Hu FANG, Lufei XU, Xiao LI, Jin LIN. Analysis of hydrogen-to-oxygen impurities in a 1000 m3/h alkaline water electrolysis system [J]. CIESC Journal, 2025, 76(4): 1765-1778. |
| [12] | Junliang HUO, Zhiguo TANG, Zongjun QIU, Yuhua FENG, Xu JIANG, Leyi WANG, Yu YANG, Fanfan QIAO, Yifan HE, Jianliang YU. Experimental research on risk of freezing and plugging during CO2 pipeline venting under throttling effect [J]. CIESC Journal, 2025, 76(4): 1898-1908. |
| [13] | Yaqi HOU, Wei ZHANG, Hong ZHANG, Feiyu GAO, Jiahua HU. Optimization of LBM multiphase flow models based on machine learning and particle swarm algorithm [J]. CIESC Journal, 2025, 76(3): 1120-1132. |
| [14] | Zongting WANG, Lili WANG, Xiaoyan SUN, Li XIA, Shaohui TAO, Shuguang XIANG. Simplified phase equilibrium correlation-based efficient and short-cut distillation column model [J]. CIESC Journal, 2025, 76(3): 1133-1142. |
| [15] | Ping LIU, Yusheng QIU, Shijing LI, Ruiqi SUN, Chen SHEN. Heat transfer and flow characteristics of nanofluids in microchannels [J]. CIESC Journal, 2025, 76(1): 184-197. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||